HAC (Russian)
RSCI (Russian)
Ulrichsweb (Ulrich’s Periodicals Directory)
Scientific Indexing Services

The evolution of the use of bacteriophages in the practice of treating infectious diseases

DOI: https://doi.org/10.29296/25877305-2023-01-14

Kh. Radzhabova(1), S. Dolinnyi(1, 2); Associate Professor O. Burgasova(1), MD
1-Peoples’ Friendship University of Russia, Moscow
2-V.P. Demikhov City Clinical Hospital, Moscow City Healthcare Department

In an era of multidrug-resistant bacterial infections that are depleting the use of chemical antibiotics, and highly effective types of antibiotics are being developed less and less, modern medicine must look for new therapeutic methods to treat infectious diseases. Potential antibacterial solutions include bacteriophage-based therapeutics, which have very different properties from the broad-spectrum antibiotics that are currently the standard of care and can be used in combination with them, often in synergy. This review traces the evolution of the development of approaches to bacteriophage therapy and outlines ways to introduce phage therapy into the practice of modern medicine

infectious diseases
bacteriophage therapy
drug resistance

  1. Hendrix R.W. Bacteriophages: Evolution of the Majority. Theor Popul Biol. 2002; 61 (4): 471–80. DOI: 10.1006/tpbi.2002.1590
  2. Clokie M.R., Millard A.D., Letarov A.V. et al. Phages in Nature. Bacteriophage. 2011; 1 (1): 31–45. DOI: 10.4161/bact.1.1.14942
  3. Grose J.H., Casjens S.R. Understanding the Enormous Diversity of Bacteriophages: The Tailed Phages that Infect the Bacterial Family Enterobacteriaceae. Virology. 2014; 468–470: 421–43. DOI: 10.1016/j.virol.2014.08.024
  4. Clark J.R., March J.B. Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol. 2006; 24 (5): 212–8. DOI: 10.1016/j.tibtech.2006.03.003
  5. Ackerman H.W. Tailed bacteriophages: the Caudovirales. Adv Virus Res. 1998; 51: 135–201. DOI: 10.1016/s0065-3527(08)60785-x
  6. Inal J.M. Phage therapy: a reappraisal of bacteriophages as antibiotics. Arch Immunol Ther Exp. 2003; 51 (4): 237–44.
  7. Sulakvelidze A., Alavidze Z., Morris J.G.Jr. Bacteriophage Therapy. Antimicrob Agents Chemother. 2001; 45 (3): 649–59. DOI: 10.1128/AAC.45.3.649-659.2001
  8. Antibiotic Resistance Threats in the United States. Atlanta, GA, USA: U.S. Department of Health and Human Services, CDC, 2019.
  9. Neu H.C. The Crisis in Antibiotic Resistance. Science. 1992; 257 (5073): 1064–73. DOI: 10.1126/science.257.5073.1064
  10. Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline; License: CC BY-NC-SA 3.0 IGO. Geneva, Switzerland: World Health Organization, 2019.
  11. Burrowes B.H., Harper D.R., Anderson J. et al. Bacteriophage Therapy: Potential Uses in the Control of Antibiotic-Resistant Pathogens. Expert Rev Anti Infect Ther. 2011; 9 (9): 775–85. DOI: 10.1586/eri.11.90
  12. Loc-Carrillo C., Abedon S.T. Pros and Cons of Phage Therapy. Bacteriophage. 2011; 1 (2): 111–4. DOI: 10.4161/bact.1.2.14590
  13. Monteiro R., Pires D.P., Costa A.R. et al. Phage Therapy: Going Temperate? Trends Microbiol. 2019; 27 (4): 368–78. DOI: 10.1016/j.tim.2018.10.008
  14. Kortright K.E., Chan B.K., Ko Antibiotic-Resistant Bacteria. Cell Host Microbe. 2019; 25 (2): 219–32. DOI: 10.1016/j.chom.2019.01.014
  15. Altamirano F.L.G., Barr J.J. Phage Therapy in the Postantibiotic Era. Clin Microbiol Rev. 2019; 32 (2): e00066-18. DOI: 10.1128/CMR.00066-18
  16. Merril C.R., Biswas B., Carlton R. et al. Long-Circulating Bacteriophage as Antibacterial Agents. Proc Natl Acad Sci USA. 1996; 93 (8): 3188–92. DOI: 10.1073/pnas.93.8.3188
  17. Summers W.C. Bacteriophage discovered. Felix d’Herelle and the Origins of Molecular Biology. Yale: University Press, 1999; рр. 47–59.
  18. Hermoso J.A., Garcia J.L., Garcia P. Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Opin Microbiol. 2007; 10 (5): 461–72. DOI: 10.1016/j.mib.2007.08.002
  19. Hankin E.H. L’action Bactericide des Eaux de la Jumna et du Gange sur le Vibrion du Cholera. Ann Inst Pasteur. 1896; 10: 511–23.
  20. Samsygina G.A., Boni E.G. Bacteriophages and Phage Therapy in Pediatric Practice. Pediatriia. 1984; 4: 67–70.
  21. Abedon S.T., Thomas-Abedon C., Thomas A. et al. Bacteriophage Prehistory: Is or Is not Hankin, 1896, a Phage Reference? Bacteriophage. 2011; 1 (3): 174–8. DOI: 10.4161/bact.1.3.16591
  22. Twort F.W. An Investigation on the Nature of Ultramicroscopic Viruses. Lancet. 1915; 186 (4814): 1241–3. DOI: 10.1016/S0140-6736(01)20383-3
  23. D’Herelle F. Sur unMicrobe Invisible Antagoniste des Bacilles Dysente’riques. C R Acad Sci. 1917; 165: 373–5.
  24. Bruynoghe R., Maisin J. Essais de Therapeutique au Moyen du Bacteriophage. C R Soc Biol. 1921; 85: 1120–1.
  25. Abedon S.T., Kuhl S.J., Blasdel B.G. et al. Phage Treatment of Human Infections. Bacteriophage. 2011; 1 (2): 66–85. DOI: 10.4161/bact.1.2.15845
  26. Smith H.W., Huggins M.B. Successful Treatment of Experimental Escherichia coli Infections in Mice Using Phage: Its General Superiority over Antibiotics. J Gen Microbiol. 1982; 128 (2): 307–18. DOI: 10.1099/00221287-128-2-307
  27. Smith H.W., Huggins M.B. Effectiveness of Phages in Treating Experimental Escherichia coli Diarrhoea in Calves, Piglets and Lambs. J Gen Microbiol. 1983; 129 (8): 2659–75. DOI: 10.1099/00221287-129-8-2659
  28. Smith H.W., Huggins M.B., Shaw K.M. Factors Influencing the Survival and Multiplication of Bacteriophages in Calves and in Their Environment. J Gen Microbiol. 1987; 133 (5): 1127–35. DOI: 10.1099/00221287-133-5-1127
  29. Fernández L., Gutiérrez D., Rodriguez A. et al. Application of Bacteriophages in the Agro-Food Sector:A Long Way toward Approval. Front Cell Infect Microbiol. 2018; 8: 296. DOI: 10.3389/fcimb.2018.00296
  30. Schooley R.T., Biswas B., Gill J.J. et al. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. Antimicrob Agents Chemother. 2017; 61 (10): e00954-17. DOI: 10.1128/AAC.00954-17
  31. Chan B.K., Turner P.E., Kim S. et al. Phage Treatment of an Aortic Graft Infected with Pseudomonas aeruginosa. Evol Med Public Health. 2018; 2018 (1): 60–6. DOI: 10.1093/emph/eoy005
  32. Law N., Logan C., Yung G. et al. Successful Adjunctive Use of Bacteriophage Therapy for Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infection in a Cystic Fibrosis Patient. Infection. 2019; 47 (4): 665–8. DOI: 10.1007/s15010-019-01319-0
  33. Dedrick R.M., Guerrero-Bustamante C.A., Garlena R.A. et al. Engineered Bacteriophages for Treatment of a Patient with a Disseminated Drug-Resistant Mycobacterium abscessus. Nat Med. 2019; 25 (5): 730–3. DOI: 10.1038/s41591-019-0437-z
  34. Nir-Paz R., Gelman D., Khouri A. et al. Successful Treatment of Antibiotic-Resistant, Poly-microbial Bone Infection with Bacteriophages and Antibiotics Combination. Clin Infect Dis. 2019; 69 (11): 2015–8. DOI: 10.1093/cid/ciz222
  35. Aslam S., Courtwright A.M., Koval C. et al. Early Clinical Experience of Bacteriophage Therapy in 3 Lung Transplant Recipients. Am J Transplant. 2019; 19 (9): 2631–9. DOI: 10.1111/ajt.15503
  36. Chanishvili N. Bacteriophages as therapeutic and prophylactic means: summary of the soviet and post soviet experiences. Curr Drug Deliv. 2016; 13 (3): 309–23. DOI: 10.2174/156720181303160520193946
  37. Debarbieux L., Leduc D., Maura D. et al. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis. 2010; 201 (7): 1096–104. DOI: 10.1086/651135
  38. Tao P., Mahalingam M., Zhu J. et al. A bacteriophage T4 nanoparticle-based dual vaccine against Anthrax and Plague. mBio. 2018; 9 (5): e01926-18. DOI: 10.1128/mBio.01926-18
  39. Jonczyk-Matysiak E., Weber-Dabrowska B., Owczarek B. et al. Phage-phagocyte interactions and their implications for phage application as therapeutics. Viruses. 2017; 9 (6): 150. DOI: 10.3390/v9060150
  40. Fehr T., Skrastina D., Pumpens P. et al. T-cell-independent type I antibody response against B cell epitopes expressed repetitively on recombinant virus particles. Proc Natl Acad Sci USA. 1998; 95 (16): 9477–81. DOI: 10.1073/pnas.95.16.9477
  41. Nicastro J., Sheldon K., Slavcev R.A. Bacteriophage lambda display systems: developments and applications. Appl Microbiol Biotechnol. 2014; 98 (7): 2853–66. DOI: 10.1007/s00253-014-5521-1
  42. Henry K.A., Arbabi-Ghahroudi M., Scott J.K. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol. 2015; 6: 755. DOI: 10.3389/fmicb.2015.00755
  43. Tao P., Zhu J., Mahalingam M. et al. Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases. Adv Drug Deliv Rev. 2019; 145: 57–72. DOI: 10.1016/j.addr.2018.06.025
  44. Tao P., Mahalingam M., Kirtley M.L. et al. Mutated and bacteriophage T4 nanoparticle arrayed F1-V immunogens from Yersinia pestis as next generation plague vaccines. PLoS Pathog. 2013; 9 (7): e1003495. DOI: 10.1371/journal.ppat.1003495
  45. Danner S., Belasco J.G. T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. Proc Natl Acad Sci USA. 2001; 98 (23): 12954–9. DOI: 10.1073/pnas.211439598
  46. Fu Y., Li J. A novel delivery platform based on bacteriophage MS2 virus-like particles. Virus Res. 2016; 211: 9–16. DOI: 10.1016/j.virusres.2015.08.022
  47. Shepardson K.M., Schwarz B., Larson K. et al. Induction of antiviral immune response through recognition of the repeating subunit pattern of viral capsids is toll-like receptor 2 dependent. mBio. 2017; 8 (6): e01356-17. DOI: 10.1128/mBio.01356-17
  48. Huang X., Wang X., Zhang J. et al. Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines. 2017; 2: 3. DOI: 10.1038/s41541-017-0006-8
  49. Deng L., Roose K., Job E.R. et al. Oral delivery of Escherichia coli persistently infected with M2e-displaying bacteriophages partially protects against influenza A virus. J Controlled Release. 2017; 264: 55–65. DOI: 10.1016/j.jconrel.2017.08.020
  50. Aghebati-Maleki L., Bakhshinejad B., Baradaran B. et al. Phage display as a promising approach for vaccine development. J Biomed Sci. 2016; 23 (1): 66. DOI: 10.1186/s12929-016-0285-9
  51. Berryhill B.A., Huseby D.L., McCall I.C. et al. Evaluating the potential efficacy and limitations of a phage for joint antibiotic and phage therapy of Staphylococcus aureus infections. Proc Natl Acad Sci USA. 2021; 118 (10): e2008007118. DOI: 10.1073/pnas.2008007118
  52. Mao N., Cubillos-Ruiz A., Cameron D.E. et al. Probiotic strains detect and suppress cholera in mice. Sci Transl Med. 2018; 10 (445): eaao2586. DOI: 10.1126/scitranslmed.aao2586
  53. Landlinger C., Tisakova L., Oberbauer V. et al. Engineered Phage Endolysin Eliminates Gardnerella Biofilm without Damaging Beneficial Bacteria in Bacterial Vaginosis Ex Vivo. Pathogens. 2021; 10 (1): 54. DOI: 10.3390/pathogens10010054
  54. Robson B. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Comput Biol Med. 2020; 119: 103670. DOI: 10.1016/j.compbiomed.2020.103670
  55. Cao L., Goreshnik I., Coventry B. et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science. 2020; 370 (6515): 426–31. DOI: 10.1126/science.abd9909