Фаготерапия: этапы изучения и применения бактериофагов в практической медицине

DOI: https://doi.org/10.29296/25877305-2023-01-14
Номер журнала: 
1
Год издания: 
2023

Раджабова Х.С., Долинный С.В., Бургасова О.А.

Широкая распространенность различных бактериальных инфекционных заболеваний на фоне развития множественной лекарственной устойчивости к основным антибактериальным препаратам (АБП), используемым в практическом здравоохранении, и отсутствие на рынке новых АБП обосновывают необходимость поиска альтернативных эффективных стратегий лечения. Среди потенциально эффективных терапевтических средств рассматриваются препараты на основе бактериофагов, которые принципиально отличаются от АБП широкого спектра действия и сегодня являются альтернативной стратегией лечения, а в сочетании с АБП имеют синергетический эффект. В данном обзоре рассматривается эволюция подходов к терапии бактериофагами, ее аттрактивные свойства и возможности в лечении бактериальных инфекций и обозначаются возможные пути внедрения фаговой терапии в практическую медицину

Ключевые слова: 
терапия
бактериофаги
фаготерапия
микроорганизмы
лизис
бактериальные инфекционные заболевания
антибактериальные препараты
лекарственная устойчивость
антибиотикорезистентность.

Для цитирования
Х.С. Раджабова(1), С.В. Долинный(1, 2), О.А. Бургасова(1), доктор медицинских наук, доцент 1-Российский университет дружбы народов, Москва 2-Городская клиническая больница им. В.П. Демихова Департамента здравоохранения города Москвы E-mail: olgaburgasova@mail.ru Фаготерапия: этапы изучения и применения бактериофагов в практической медицине . Врач, 2023; (1): 64-67 https://doi.org/10.29296/25877305-2023-01-14


Список литературы: 
  1. Hendrix R.W. Bacteriophages: Evolution of the Majority. Theor Popul Biol. 2002; 61 (4): 471–80. DOI: 10.1006/tpbi.2002.1590
  2. Clokie M.R., Millard A.D., Letarov A.V. et al. Phages in Nature. Bacteriophage. 2011; 1 (1): 31–45. DOI: 10.4161/bact.1.1.14942
  3. Grose J.H., Casjens S.R. Understanding the Enormous Diversity of Bacteriophages: The Tailed Phages that Infect the Bacterial Family Enterobacteriaceae. Virology. 2014; 468–470: 421–43. DOI: 10.1016/j.virol.2014.08.024
  4. Clark J.R., March J.B. Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol. 2006; 24 (5): 212–8. DOI: 10.1016/j.tibtech.2006.03.003
  5. Ackerman H.W. Tailed bacteriophages: the Caudovirales. Adv Virus Res. 1998; 51: 135–201. DOI: 10.1016/s0065-3527(08)60785-x
  6. Inal J.M. Phage therapy: a reappraisal of bacteriophages as antibiotics. Arch Immunol Ther Exp. 2003; 51 (4): 237–44.
  7. Sulakvelidze A., Alavidze Z., Morris J.G.Jr. Bacteriophage Therapy. Antimicrob Agents Chemother. 2001; 45 (3): 649–59. DOI: 10.1128/AAC.45.3.649-659.2001
  8. Antibiotic Resistance Threats in the United States. Atlanta, GA, USA: U.S. Department of Health and Human Services, CDC, 2019.
  9. Neu H.C. The Crisis in Antibiotic Resistance. Science. 1992; 257 (5073): 1064–73. DOI: 10.1126/science.257.5073.1064
  10. Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline; License: CC BY-NC-SA 3.0 IGO. Geneva, Switzerland: World Health Organization, 2019.
  11. Burrowes B.H., Harper D.R., Anderson J. et al. Bacteriophage Therapy: Potential Uses in the Control of Antibiotic-Resistant Pathogens. Expert Rev Anti Infect Ther. 2011; 9 (9): 775–85. DOI: 10.1586/eri.11.90
  12. Loc-Carrillo C., Abedon S.T. Pros and Cons of Phage Therapy. Bacteriophage. 2011; 1 (2): 111–4. DOI: 10.4161/bact.1.2.14590
  13. Monteiro R., Pires D.P., Costa A.R. et al. Phage Therapy: Going Temperate? Trends Microbiol. 2019; 27 (4): 368–78. DOI: 10.1016/j.tim.2018.10.008
  14. Kortright K.E., Chan B.K., Ko Antibiotic-Resistant Bacteria. Cell Host Microbe. 2019; 25 (2): 219–32. DOI: 10.1016/j.chom.2019.01.014
  15. Altamirano F.L.G., Barr J.J. Phage Therapy in the Postantibiotic Era. Clin Microbiol Rev. 2019; 32 (2): e00066-18. DOI: 10.1128/CMR.00066-18
  16. Merril C.R., Biswas B., Carlton R. et al. Long-Circulating Bacteriophage as Antibacterial Agents. Proc Natl Acad Sci USA. 1996; 93 (8): 3188–92. DOI: 10.1073/pnas.93.8.3188
  17. Summers W.C. Bacteriophage discovered. Felix d’Herelle and the Origins of Molecular Biology. Yale: University Press, 1999; рр. 47–59.
  18. Hermoso J.A., Garcia J.L., Garcia P. Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Opin Microbiol. 2007; 10 (5): 461–72. DOI: 10.1016/j.mib.2007.08.002
  19. Hankin E.H. L’action Bactericide des Eaux de la Jumna et du Gange sur le Vibrion du Cholera. Ann Inst Pasteur. 1896; 10: 511–23.
  20. Samsygina G.A., Boni E.G. Bacteriophages and Phage Therapy in Pediatric Practice. Pediatriia. 1984; 4: 67–70.
  21. Abedon S.T., Thomas-Abedon C., Thomas A. et al. Bacteriophage Prehistory: Is or Is not Hankin, 1896, a Phage Reference? Bacteriophage. 2011; 1 (3): 174–8. DOI: 10.4161/bact.1.3.16591
  22. Twort F.W. An Investigation on the Nature of Ultramicroscopic Viruses. Lancet. 1915; 186 (4814): 1241–3. DOI: 10.1016/S0140-6736(01)20383-3
  23. D’Herelle F. Sur unMicrobe Invisible Antagoniste des Bacilles Dysente’riques. C R Acad Sci. 1917; 165: 373–5.
  24. Bruynoghe R., Maisin J. Essais de Therapeutique au Moyen du Bacteriophage. C R Soc Biol. 1921; 85: 1120–1.
  25. Abedon S.T., Kuhl S.J., Blasdel B.G. et al. Phage Treatment of Human Infections. Bacteriophage. 2011; 1 (2): 66–85. DOI: 10.4161/bact.1.2.15845
  26. Smith H.W., Huggins M.B. Successful Treatment of Experimental Escherichia coli Infections in Mice Using Phage: Its General Superiority over Antibiotics. J Gen Microbiol. 1982; 128 (2): 307–18. DOI: 10.1099/00221287-128-2-307
  27. Smith H.W., Huggins M.B. Effectiveness of Phages in Treating Experimental Escherichia coli Diarrhoea in Calves, Piglets and Lambs. J Gen Microbiol. 1983; 129 (8): 2659–75. DOI: 10.1099/00221287-129-8-2659
  28. Smith H.W., Huggins M.B., Shaw K.M. Factors Influencing the Survival and Multiplication of Bacteriophages in Calves and in Their Environment. J Gen Microbiol. 1987; 133 (5): 1127–35. DOI: 10.1099/00221287-133-5-1127
  29. Fernández L., Gutiérrez D., Rodriguez A. et al. Application of Bacteriophages in the Agro-Food Sector:A Long Way toward Approval. Front Cell Infect Microbiol. 2018; 8: 296. DOI: 10.3389/fcimb.2018.00296
  30. Schooley R.T., Biswas B., Gill J.J. et al. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. Antimicrob Agents Chemother. 2017; 61 (10): e00954-17. DOI: 10.1128/AAC.00954-17
  31. Chan B.K., Turner P.E., Kim S. et al. Phage Treatment of an Aortic Graft Infected with Pseudomonas aeruginosa. Evol Med Public Health. 2018; 2018 (1): 60–6. DOI: 10.1093/emph/eoy005
  32. Law N., Logan C., Yung G. et al. Successful Adjunctive Use of Bacteriophage Therapy for Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infection in a Cystic Fibrosis Patient. Infection. 2019; 47 (4): 665–8. DOI: 10.1007/s15010-019-01319-0
  33. Dedrick R.M., Guerrero-Bustamante C.A., Garlena R.A. et al. Engineered Bacteriophages for Treatment of a Patient with a Disseminated Drug-Resistant Mycobacterium abscessus. Nat Med. 2019; 25 (5): 730–3. DOI: 10.1038/s41591-019-0437-z
  34. Nir-Paz R., Gelman D., Khouri A. et al. Successful Treatment of Antibiotic-Resistant, Poly-microbial Bone Infection with Bacteriophages and Antibiotics Combination. Clin Infect Dis. 2019; 69 (11): 2015–8. DOI: 10.1093/cid/ciz222
  35. Aslam S., Courtwright A.M., Koval C. et al. Early Clinical Experience of Bacteriophage Therapy in 3 Lung Transplant Recipients. Am J Transplant. 2019; 19 (9): 2631–9. DOI: 10.1111/ajt.15503
  36. Chanishvili N. Bacteriophages as therapeutic and prophylactic means: summary of the soviet and post soviet experiences. Curr Drug Deliv. 2016; 13 (3): 309–23. DOI: 10.2174/156720181303160520193946
  37. Debarbieux L., Leduc D., Maura D. et al. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis. 2010; 201 (7): 1096–104. DOI: 10.1086/651135
  38. Tao P., Mahalingam M., Zhu J. et al. A bacteriophage T4 nanoparticle-based dual vaccine against Anthrax and Plague. mBio. 2018; 9 (5): e01926-18. DOI: 10.1128/mBio.01926-18
  39. Jonczyk-Matysiak E., Weber-Dabrowska B., Owczarek B. et al. Phage-phagocyte interactions and their implications for phage application as therapeutics. Viruses. 2017; 9 (6): 150. DOI: 10.3390/v9060150
  40. Fehr T., Skrastina D., Pumpens P. et al. T-cell-independent type I antibody response against B cell epitopes expressed repetitively on recombinant virus particles. Proc Natl Acad Sci USA. 1998; 95 (16): 9477–81. DOI: 10.1073/pnas.95.16.9477
  41. Nicastro J., Sheldon K., Slavcev R.A. Bacteriophage lambda display systems: developments and applications. Appl Microbiol Biotechnol. 2014; 98 (7): 2853–66. DOI: 10.1007/s00253-014-5521-1
  42. Henry K.A., Arbabi-Ghahroudi M., Scott J.K. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol. 2015; 6: 755. DOI: 10.3389/fmicb.2015.00755
  43. Tao P., Zhu J., Mahalingam M. et al. Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases. Adv Drug Deliv Rev. 2019; 145: 57–72. DOI: 10.1016/j.addr.2018.06.025
  44. Tao P., Mahalingam M., Kirtley M.L. et al. Mutated and bacteriophage T4 nanoparticle arrayed F1-V immunogens from Yersinia pestis as next generation plague vaccines. PLoS Pathog. 2013; 9 (7): e1003495. DOI: 10.1371/journal.ppat.1003495
  45. Danner S., Belasco J.G. T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. Proc Natl Acad Sci USA. 2001; 98 (23): 12954–9. DOI: 10.1073/pnas.211439598
  46. Fu Y., Li J. A novel delivery platform based on bacteriophage MS2 virus-like particles. Virus Res. 2016; 211: 9–16. DOI: 10.1016/j.virusres.2015.08.022
  47. Shepardson K.M., Schwarz B., Larson K. et al. Induction of antiviral immune response through recognition of the repeating subunit pattern of viral capsids is toll-like receptor 2 dependent. mBio. 2017; 8 (6): e01356-17. DOI: 10.1128/mBio.01356-17
  48. Huang X., Wang X., Zhang J. et al. Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines. 2017; 2: 3. DOI: 10.1038/s41541-017-0006-8
  49. Deng L., Roose K., Job E.R. et al. Oral delivery of Escherichia coli persistently infected with M2e-displaying bacteriophages partially protects against influenza A virus. J Controlled Release. 2017; 264: 55–65. DOI: 10.1016/j.jconrel.2017.08.020
  50. Aghebati-Maleki L., Bakhshinejad B., Baradaran B. et al. Phage display as a promising approach for vaccine development. J Biomed Sci. 2016; 23 (1): 66. DOI: 10.1186/s12929-016-0285-9
  51. Berryhill B.A., Huseby D.L., McCall I.C. et al. Evaluating the potential efficacy and limitations of a phage for joint antibiotic and phage therapy of Staphylococcus aureus infections. Proc Natl Acad Sci USA. 2021; 118 (10): e2008007118. DOI: 10.1073/pnas.2008007118
  52. Mao N., Cubillos-Ruiz A., Cameron D.E. et al. Probiotic strains detect and suppress cholera in mice. Sci Transl Med. 2018; 10 (445): eaao2586. DOI: 10.1126/scitranslmed.aao2586
  53. Landlinger C., Tisakova L., Oberbauer V. et al. Engineered Phage Endolysin Eliminates Gardnerella Biofilm without Damaging Beneficial Bacteria in Bacterial Vaginosis Ex Vivo. Pathogens. 2021; 10 (1): 54. DOI: 10.3390/pathogens10010054
  54. Robson B. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Comput Biol Med. 2020; 119: 103670. DOI: 10.1016/j.compbiomed.2020.103670
  55. Cao L., Goreshnik I., Coventry B. et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science. 2020; 370 (6515): 426–31. DOI: 10.1126/science.abd9909