HAC (Russian)
RSCI (Russian)
Ulrichsweb (Ulrich’s Periodicals Directory)
Scientific Indexing Services

Postcovid syndrome in the practice of a therapist

DOI: https://doi.org/10.29296/25877305-2022-04-03

Associate Professor V. Skvortsov, MD; A. Tumarenko, Candidate of Medical Sciences; E. Skvortsova; D. Shtonda
Volgograd State Medical University

Postcoid syndrome (post-COVID-19 syndrome, Long COVID, post-acute sequelae of COVID-19, PASC, chronic COVID syndrome, CCS, long-haul COVID) is a consequence of a new coronavirus infection (COVID-19), in which up to 20% of people who have had a coronavirus infection suffer from long-term symptoms lasting up to 12 weeks or longer. Postcoid syndrome is represented in ICD 10 by code U09.9 «Condition after COVID-19, unspecified.» There is no universal consensus on the definition of postcoid syndrome. Some authors suggest that the subacute period begins three weeks after the onset of symptoms, since the average duration of a positive polymerase chain reaction (PCR) in symptomatic patients is estimated at 24 days.

postcoid syndrome
systemic lesions

  1. Escher F., Pietsch H., Aleshcheva G. et al. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail. 2020; 7 (5): 2440–7. DOI: 10.1002/ehf2.12805
  2. Chopra V., Flanders S.A., O’Malley M. et al. Sixty-Day Outcomes Among Patients Hospitalized With COVID-19. Ann Intern Med. 2021; 174 (4): 576–8. DOI: 10.7326/M20-5661
  3. Arnold D.T., Hamilton F.W., Milne A. et al. Patient outcomes after hospitalisation with COVID-19 and implications for follow-up: results from a prospective UK cohort. Thorax. 2021; 76 (4): 399–401. DOI: 10.1136/thoraxjnl-2020-216086
  4. Wu Q., Zhou L., Sun X. et al. Altered Lipid Metabolism in Recovered SARS Patients Twelve Years after Infection. Sci Rep. 2017; 7 (1): 9110. DOI: 10.1038/s41598-017-09536-z
  5. Chaudhary R., Kreutz R.P., Bliden K.P. et al. Personalizing Antithrombotic Therapy in COVID-19: Role of Thromboelastography and Thromboelastometry. Thromb Haemost. 2020; 120 (11): 1594–6. DOI: 10.1055/s-0040-1714217
  6. Oronsky B., Larson C., Hammond T.C. et al. A review of persistent post-COVID syndrome (PPCS). Clin Rev Allergy Immunol. 2021; 1–9. [Epub ahead of print]. DOI: 10.1007/s12016-021-08848-3
  7. Salmon-Ceron D., Slama D., De Broucker T. et al. APHP COVID-19 research collaboration. Clinical, virological and imaging profile in patients with prolonged forms of COVID-19: a cross-sectional study. J Infect. 2021; 82: e1-4. DOI: 10.1016/j.jinf.2020.12.002
  8. Carmo A., Pereira-Vaz J., Mota V. et al. Clearance and persistence of SARS-CoV-2 RNA in patients with COVID. J Med Virol. 2020; 92 (10): 2227–31. DOI: 10.1002/jmv.26103
  9. Kandetu T.B., Dziuban E.J., Sikuvi K. et al. Persistence of positive RT-PCR results for over 70 days in two travelers with COVID-19. Disaster Med Public Health Prep. 2020; 1–2. DOI:10.1017/dmp.2020.450
  10. Vibholm L.K., Nielsen S.S.F., Pahus M.H. et al. SARS-CoV-2 persistence is associated with antigen-specific CD8 T-cell responses. EBioMedicine. 2021; 64: 103230. DOI: 10.1016/j.ebiom.2021.103230
  11. Wang X., Huang K., Jiang H. et al. Long-term existence of SARS-CoV-2 in COVID-19 patients: host immunity, viral virulence, and transmissibility. Virol Sin. 2020; 35 (6): 793–802. DOI: 10.1007/s12250-020-00308-0
  12. Kudlay D., Shirobokov Ya., Gladunova E. et al. Diagnosis of COVID-19. Methods and problems of virus SARS-CoV-2 detection under pandemic conditions. Vrach. 2020; 31 (8): 5–10 (in Russ.). DOI: 10.29296/25877305-2020-08-01
  13. Hirotsu Y., Maejima M., Shibusawa M. et al. Analysis of a persistent viral shedding patient infected with SARS-CoV-2 by RT-qPCR, FilmArray Respiratory Panel v2.1, and antigen detection. J Infect Chemother. 2020; 27 (2): 406–9. DOI: 10.1016/j.jiac.2020.10.026
  14. Li Q., Zheng X.S., Shen X.R. et al. Prolonged shedding of severe acute respiratory syndrome coronavirus 2 in patients with COVID-19. Emerg Microbes Infect. 2020; 9 (1): 2571–7. DOI: 10.1080/22221751.2020.1852058
  15. Park S.K., Lee C., Park D. et al. Detection of SARS-CoV-2 in fecal samples from patients with asymptomatic and mild COVID-19 in Korea. Clin Gastroenterol Hepatol. 2020; 19 (7): 1387–94.e2. DOI: 10.1016/j.cgh.2020.06.005
  16. Wu Y., Guo C., Tang L. et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020; 5 (5): 434–5. DOI: 10.1016/S2468-1253(20)30083-2
  17. Gaebler C., Wang Z., Lorenz J.C.C. et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021; 591 (7851): 639–44. DOI: 10.1038/s41586-021-03207-w
  18. Ehrenfeld M., Tincani A., Andreoli L. et al. COVID-19 and autoimmunity. Autoimmun Rev. 2020; 19 (8): 102597. DOI: 10.1016/j.autrev.2020.102597
  19. Lui D.T.W., Lee C.H., Chow W.S. et al. Thyroid dysfunction in relation to immune profile, disease status and outcome in 191 patients with COVID-19. J Clin Endocrinol Metab. 2020; 106 (2): e926–e935. DOI: 10.1210/clinem/dgaa813
  20. Muller I., Cannavaro D., Dazzi D. et al. SARS-CoV-2-related atypical thyroiditis. Lancet Diabetes Endocrinol. 2020; 8 (9): 739–41. DOI: 10.1016/S2213-8587(20)30266-7
  21. Li Q., Wang B., Mu K. et al. The pathogenesis of thyroid autoimmune diseases: New T lymphocytes – Cytokines circuits beyond the Th1-Th2 paradigm. J Cell Physiol. 2019; 234 (3): 2204–16. DOI: 10.1002/jcp.27180
  22. Zuo Y., Estes S.K., Ali R.A. et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med. 2020; 12: eabd3876. DOI: 10.1126/scitranslmed.abd3876
  23. Bastard P., Rosen L.B., Zhang Q. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020; 370 (6515): 370. DOI: 10.1126/science.abd4585
  24. Gao Z.W., Zhang H., Liu C. et al. Autoantibodies in COVID-19: frequency and function. Autoimmun Rev. 2021; 20 (3): 102754. DOI: 10.1016/j.autrev.2021.102754
  25. Vlachoyiannopoulos P.G., Magira E., Alexopoulos H. et al. Autoantibodies related to systemic autoimmune rheumatic diseases in severely ill patients with COVID-19. Ann Rheum Dis. 2020; 79 (12): 1661–3. DOI: 10.1136/annrheumdis-2020-218009
  26. Zhou Y., Han T., Chen J. et al. Clinical and autoimmune characteristics of severe and critical cases of COVID. Clin Transl Sci. 2020; 13 (6): 1077–86. DOI: 10.1111/cts.12805
  27. Elkon K., Casali P. Nature and functions of autoantibodies. Nat Clin Pract Rheumatol. 2008; 4 (9): 491–8. DOI: 10.1038/ncprheum0895
  28. Cojocaru M., Cojocaru I.M., Silosi I. et al. Manifestations of systemic lupus erythematosus. Maedica (Bucur). 2011; 6 (4): 330–6.
  29. Guo Q., Wang Y., Xu D. et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018; 6: 15. DOI: 10.1038/s41413-018-0016-9
  30. Fathi N., Rezaei N. Lymphopenia in COVID-19: therapeutic opportunities. Cell Biol Int. 2020; 44 (9): 1792–7. DOI: 10.1002/cbin.11403
  31. Tavakolpour S., Rakhshandehroo T., Wei E.X. et al. Lymphopenia during the COVID-19 infection: What it shows and what can be learned. Immunol Lett. 2020; 225: 31–2. DOI: 10.1016/j.imlet.2020.06.013
  32. Cheng Y., Zhao H., Song P. et al. Dynamic changes of lymphocyte counts in adult patients with severe pandemic H1N1 influenza A. J Infect Public Health. 2019; 12 (6): 878–83. DOI: 10.1016/j.jiph.2019.05.017
  33. Kong M., Zhang H., Cao X. et al. Higher level of neutrophil-to-lymphocyte is associated with severe COVID-19. Epidemiol Infect. 2020; 148: e139. DOI: 10.1017/S0950268820001557
  34. Danwang C., Endomba F.T., Nkeck J.R. et al. A meta-analysis of potential biomarkers associated with severity of coronavirus disease 2019 (COVID-19). Biomark Res. 2020; 8 (1): 37. DOI: 10.1186/s40364-020-00217-0
  35. Malik P., Patel U., Mehta D. et al. Biomarkers and outcomes of COVID-19 hospitalisations: systematic review and meta-analysis. BMJ Evid Based Med. 2020; 26 (3): 107–8. DOI:10.1136/bmjebm-2020-111536
  36. Ou M., Zhu J., Ji P. et al. Risk factors of severe cases with COVID-19: a meta-analysis. Epidemiol Infect. 2020; 148: e175. DOI: 10.1017/S095026882000179X
  37. Hu F., Chen F., Ou Z. et al. A compromised specific humoral immune response against the SARS-CoV-2 receptor-binding domain is related to viral persistence and periodic shedding in the gastrointestinal tract. Cell Mol Immunol. 2020; 17 (11): 1119–25. DOI: 10.1038/s41423-020-00550-2
  38. Lamers M.M., Beumer J., Vaart J. et al. SARS-CoV-2 productively infects human gut enterocytes. Science. 2020; 369 (6499): 50–4. DOI: 10.1126/science.abc1669
  39. Xiao F., Tang M., Zheng X. et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020; 158 (6): 1831–1833.e3. DOI: 10.1053/j.gastro.2020.02.055
  40. Zang R., Castro M.F.G., McCune B.T. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. 2020; 5 (47): eabc3582. DOI: 10.1126/sciimmunol.abc3582
  41. Cheung K.S., Hung I.F.N., Chan P.P.Y. et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong Cohort: systematic review and meta-analysis. Gastroenterology. 2020; 159 (1): 81–95. DOI: 10.1053/j.gastro.2020.03.065
  42. Mao R., Qiu Y., He J.S. et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020; 5 (7): 667–8. DOI: 10.1016/S2468-1253(20)30126-6
  43. Liang L., Yang B., Jiang N. et al. Three-month Follow-up Study of Survivors of Coronavirus Disease 2019 after Discharge. J Korean Med Sci. 2020; 35 (47): e418. DOI: 10.3346/jkms.2020.35.e418
  44. Petersen M.S., Kristiansen M.F., Hanusson K.D. et al. Long COVID in the Faroe Islands – a longitudinal study among non-hospitalized patients. Clin Infect Dis. 2021; 73 (11): e4058–e4063. DOI: 10.1093/cid/ciaa1792
  45. Zhao Y.M., Shang Y.M., Song W.B. et al. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. EClinicalMedicine. 2020; 25: 100463. DOI: 10.1016/j.eclinm.2020.100463
  46. Yeoh Y.K., Zuo T., Lui G.C.-Y. et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021; 70 (4): 698–706. DOI: 10.1136/gutjnl-2020-323020
  47. Zuo T., Zhan H., Zhang F. et al. Alterations in Fecal Fungal Microbiome of Patients With COVID-19 During Time of Hospitalization until Discharge. Gastroenterology. 2020; 159 (4): 1302–1310.e5. DOI: 10.1053/j.gastro.2020.06.048
  48. Zuo T., Zhang F., Lui G.C.Y. et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020; 159 (3): 944–955.e8. DOI: 10.1053/j.gastro.2020.05.048
  49. Belkaid Y., Hand T.W. Role of the microbiota in immunity and inflammation. Cell. 2014; 157 (1): 121–50. DOI: 10.1016/j.cell.2014.03.011
  50. Yong S.J., Tong T., Chew J. et al. Antidepressive mechanisms of probiotics and their therapeutic potential. Front Neurosci. 2019; 13: 1361. DOI: 10.3389/fnins.2019.01361
  51. Williamson E.J., Walker A.J., Bhaskaran K. et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020; 584 (7821): 430–6. DOI: 10.1038/s41586-020-2521-4
  52. Huang C., Huang L., Wang Y. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021; 397 (10270): 220–32. DOI: 10.1016/S0140-6736(20)32656-8
  53. Borodulina E.A., Shirobokov Y.E., Gladunova E.P. et al. Virus-associated lung disease. Klinicheskaya farmakologiya i terapiya = Clin Pharmacol Ther. 2020; 29 (3): 61–6 (in Russ.). DOI: 10.32756/0869-5490-2020-3-61-66
  54. Burnham E.L., Janssen W.J., Riches D.W. et alP. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance. Eur Respir J. 2014; 43 (1): 276–85. DOI: 10.1183/09031936.00196412
  55. Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. N Engl J Med. 2020; 383 (2): 120–8. DOI: 10.1056/NEJMoa2015432
  56. Chippa V., Aleem A., Anjum F. Post Acute Coronavirus (COVID-19) Syndrome. [Updated 2021 Oct 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2021.
  57. Lindner D., Fitzek A., Bräuninger H. et al. Association of Cardiac Infection With SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases. JAMA Cardiol. 2020; 5 (11): 1281–5. DOI: 10.1001/jamacardio.2020.3551
  58. Solomon I.H., Normandin E., Bhattacharyya S. et al. Neuropathological Features of COVID-19. N Engl J Med. 2020; 383 (10): 989–92. DOI: 10.1056/NEJMc2019373
  59. Peleg Y., Kudose S., D’Agati V. et al. Acute Kidney Injury Due to Collapsing Glomerulopathy Following COVID-19 Infection. Kidney Int Rep. 2020; 5 (6): 940–5. DOI: 10.1016/j.ekir.2020.04.017
  60. Kaseda E.T., Levine A.J. Post-traumatic stress disorder: A differential diagnostic consideration for COVID-19 survivors. Clin Neuropsychol. 2020; 34 (7–8): 1498–514. DOI: 10.1080/13854046.2020.1811894
  61. Mo X., Jian W., Su Z. et al. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur Respir J. 2020; 55: 2001217. DOI: 10.1183/13993003.01217-2020
  62. Shah A.S., Wong A.W., Hague C.J. et al. A prospective study of 12-week respiratory outcomes in COVID-19-related hospitalisations. Thorax. 2021; 76: 402–4. DOI: 10.1136/thoraxjnl-2020-216308
  63. Carvalho-Schneider C., Laurent E., Lemaignen A. et al. Follow-up of adults with non-critical COVID-19 two months after symptoms’ onset. Clin Microbiol Infect. 2021; 27: 258–63. DOI: 10.1016/j.cmi.2020.09.052
  64. Carfi A., Bernabei R., Landi F. Persistent symptoms in patients after acute COVID19. JAMA. 2020; 324: 603–5. DOI: 10.1001/jama.2020.12603
  65. Nalbandian A., Sehgal K., Gupta A. et al. Post-acute COVID-19 syndrome. Nat Med. 2021; 27: 601–15. DOI: 10.1038/s41591-021-01283-z
  66. Puntmann V.O., Carerj M.L., Wieters I. et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5: 1265–73. DOI: 10.1001/jamacardio.2020.3557
  67. Patell R., Bogue T., Koshy A. et al. Postdischarge thrombosis and hemorrhage in patients with COVID-19. Blood. 2020; 136: 1342–6. DOI: 10.1182/blood.2020007938
  68. Taquet M., Geddes J.R., Husain M. et al. 6-month neurological and psychiatric outcomes in 236379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021; 8 (5): 416–27. DOI: 10.1016/S2215-0366(21)00084-5
  69. Sampaio Rocha-Filho P.A., Voss L. Persistent headache and persistent anosmia associated with COVID-19. Headache. 2020; 60: 1797–9. DOI: 10.1111/head.13941
  70. Liu J.W.T.W., de Luca R.D., Mello Neto H.O. et al. Post- COVID-19 syndrome? New daily persistent headache in the aftermath of COVID-19. Arq Neuropsiquiatr. 2020; 78 (11): 753–4. DOI: 10.1590/0004-282X20200187
  71. Dani M., Dirksen A., Taraborrelli P. et al. Autonomic dysfunction in ‘long COVID’: rationale, physiology and management strategies. Clin Med (Lond). 2021; 21 (1): e63–7. DOI: 10.7861/clinmed.2020-0896
  72. Dedov D. New coronavirus infection: clinical and pathogenetic aspects, prevention, importance of vitamins and trace elements. Vrach. 2022; 33 (2): 47–49 (in Russ.). DOI: 10.29296/25877305-2022-02-07
  73. Dedov D.V., Marchenko S.D. Vitamins, iron, zinc, selenium, selenium-containing drugs in the complex prevention of complications and treatment of patients with COVID-19. Pharmacy. 2022; 71 (1): 5–9. DOI: 10.29296/25419218-2022-01-01