Постковидный синдром в практике терапевта

DOI: https://doi.org/10.29296/25877305-2022-04-03
Номер журнала: 
4
Год издания: 
2022

В.В. Скворцов, доктор медицинских наук, профессор,
А.В. Тумаренко, кандидат медицинских наук, доцент,
Е.М. Скворцова,
Д.А. Штонда
Волгоградский государственный медицинский университет Минздрава России
E-mail: vskvortsov1@ya.ru

Постковидный синдром (ПКС) (post-COVID-19 syndrome, Long COVID, post-acute sequelae of COVID-19, PASC, chronic COVID syndrome, CCS, long-haul COVID) является последствием новой коронавирусной инфекции (COVID-19), при которой до 20% людей, перенесших коронавирусную инфекцию, страдают от долгосрочных симптомов (≥12 нед). ПКС представлен в МКБ-10 кодом U09.9 «Состояние после COVID-19 неуточненное». Универсальный консенсус в определении ПКС отсутствует. Некоторые авторы предполагают, что подострый период начинается через 3 нед после появления симптомов, поскольку средняя продолжительность положительного результата полимеразной цепной реакции у пациентов с симптомами оценивается в 24 дня.

Ключевые слова: 
COVID-19
постковидный синдром
поражения систем
диагностика
лечение

Для цитирования
Скворцов В.В., Тумаренко А.В., Скворцова Е.М. , Штонда Д.А. Постковидный синдром в практике терапевта . Врач, 2022; (4): 19-28 https://doi.org/10.29296/25877305-2022-04-03


Список литературы: 
  1. Escher F., Pietsch H., Aleshcheva G. et al. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail. 2020; 7 (5): 2440–7. DOI: 10.1002/ehf2.12805
  2. Chopra V., Flanders S.A., O’Malley M. et al. Sixty-Day Outcomes Among Patients Hospitalized With COVID-19. Ann Intern Med. 2021; 174 (4): 576–8. DOI: 10.7326/M20-5661
  3. Arnold D.T., Hamilton F.W., Milne A. et al. Patient outcomes after hospitalisation with COVID-19 and implications for follow-up: results from a prospective UK cohort. Thorax. 2021; 76 (4): 399–401. DOI: 10.1136/thoraxjnl-2020-216086
  4. Wu Q., Zhou L., Sun X. et al. Altered Lipid Metabolism in Recovered SARS Patients Twelve Years after Infection. Sci Rep. 2017; 7 (1): 9110. DOI: 10.1038/s41598-017-09536-z
  5. Chaudhary R., Kreutz R.P., Bliden K.P. et al. Personalizing Antithrombotic Therapy in COVID-19: Role of Thromboelastography and Thromboelastometry. Thromb Haemost. 2020; 120 (11): 1594–6. DOI: 10.1055/s-0040-1714217
  6. Oronsky B., Larson C., Hammond T.C. et al. A review of persistent post-COVID syndrome (PPCS). Clin Rev Allergy Immunol. 2021; 1–9. [Epub ahead of print]. DOI: 10.1007/s12016-021-08848-3
  7. Salmon-Ceron D., Slama D., De Broucker T. et al. APHP COVID-19 research collaboration. Clinical, virological and imaging profile in patients with prolonged forms of COVID-19: a cross-sectional study. J Infect. 2021; 82: e1-4. DOI: 10.1016/j.jinf.2020.12.002
  8. Carmo A., Pereira-Vaz J., Mota V. et al. Clearance and persistence of SARS-CoV-2 RNA in patients with COVID. J Med Virol. 2020; 92 (10): 2227–31. DOI: 10.1002/jmv.26103
  9. Kandetu T.B., Dziuban E.J., Sikuvi K. et al. Persistence of positive RT-PCR results for over 70 days in two travelers with COVID-19. Disaster Med Public Health Prep. 2020; 1–2. DOI:10.1017/dmp.2020.450
  10. Vibholm L.K., Nielsen S.S.F., Pahus M.H. et al. SARS-CoV-2 persistence is associated with antigen-specific CD8 T-cell responses. EBioMedicine. 2021; 64: 103230. DOI: 10.1016/j.ebiom.2021.103230
  11. Wang X., Huang K., Jiang H. et al. Long-term existence of SARS-CoV-2 in COVID-19 patients: host immunity, viral virulence, and transmissibility. Virol Sin. 2020; 35 (6): 793–802. DOI: 10.1007/s12250-020-00308-0
  12. Кудлай Д.А., Широбоков Я.Е., Гладунова Е.П. и др. Диагностика COVID-19. Способы и проблемы обнаружения вируса SARS-COV-2 в условиях пандемии. Врач. 2020; 31 (8): 5–10. DOI: 10.29296/25877305-2020-08-01
  13. Hirotsu Y., Maejima M., Shibusawa M. et al. Analysis of a persistent viral shedding patient infected with SARS-CoV-2 by RT-qPCR, FilmArray Respiratory Panel v2.1, and antigen detection. J Infect Chemother. 2020; 27 (2): 406–9. DOI: 10.1016/j.jiac.2020.10.026
  14. Li Q., Zheng X.S., Shen X.R. et al. Prolonged shedding of severe acute respiratory syndrome coronavirus 2 in patients with COVID-19. Emerg Microbes Infect. 2020; 9 (1): 2571–7. DOI: 10.1080/22221751.2020.1852058
  15. Park S.K., Lee C., Park D. et al. Detection of SARS-CoV-2 in fecal samples from patients with asymptomatic and mild COVID-19 in Korea. Clin Gastroenterol Hepatol. 2020; 19 (7): 1387–94.e2. DOI: 10.1016/j.cgh.2020.06.005
  16. Wu Y., Guo C., Tang L. et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020; 5 (5): 434–5. DOI: 10.1016/S2468-1253(20)30083-2
  17. Gaebler C., Wang Z., Lorenz J.C.C. et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021; 591 (7851): 639–44. DOI: 10.1038/s41586-021-03207-w
  18. Ehrenfeld M., Tincani A., Andreoli L. et al. COVID-19 and autoimmunity. Autoimmun Rev. 2020; 19 (8): 102597. DOI: 10.1016/j.autrev.2020.102597
  19. Lui D.T.W., Lee C.H., Chow W.S. et al. Thyroid dysfunction in relation to immune profile, disease status and outcome in 191 patients with COVID-19. J Clin Endocrinol Metab. 2020; 106 (2): e926–e935. DOI: 10.1210/clinem/dgaa813
  20. Muller I., Cannavaro D., Dazzi D. et al. SARS-CoV-2-related atypical thyroiditis. Lancet Diabetes Endocrinol. 2020; 8 (9): 739–41. DOI: 10.1016/S2213-8587(20)30266-7
  21. Li Q., Wang B., Mu K. et al. The pathogenesis of thyroid autoimmune diseases: New T lymphocytes – Cytokines circuits beyond the Th1-Th2 paradigm. J Cell Physiol. 2019; 234 (3): 2204–16. DOI: 10.1002/jcp.27180
  22. Zuo Y., Estes S.K., Ali R.A. et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med. 2020; 12: eabd3876. DOI: 10.1126/scitranslmed.abd3876
  23. Bastard P., Rosen L.B., Zhang Q. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020; 370 (6515): 370. DOI: 10.1126/science.abd4585
  24. Gao Z.W., Zhang H., Liu C. et al. Autoantibodies in COVID-19: frequency and function. Autoimmun Rev. 2021; 20 (3): 102754. DOI: 10.1016/j.autrev.2021.102754
  25. Vlachoyiannopoulos P.G., Magira E., Alexopoulos H. et al. Autoantibodies related to systemic autoimmune rheumatic diseases in severely ill patients with COVID-19. Ann Rheum Dis. 2020; 79 (12): 1661–3. DOI: 10.1136/annrheumdis-2020-218009
  26. Zhou Y., Han T., Chen J. et al. Clinical and autoimmune characteristics of severe and critical cases of COVID. Clin Transl Sci. 2020; 13 (6): 1077–86. DOI: 10.1111/cts.12805
  27. Elkon K., Casali P. Nature and functions of autoantibodies. Nat Clin Pract Rheumatol. 2008; 4 (9): 491–8. DOI: 10.1038/ncprheum0895
  28. Cojocaru M., Cojocaru I.M., Silosi I. et al. Manifestations of systemic lupus erythematosus. Maedica (Bucur). 2011; 6 (4): 330–6.
  29. Guo Q., Wang Y., Xu D. et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018; 6: 15. DOI: 10.1038/s41413-018-0016-9
  30. Fathi N., Rezaei N. Lymphopenia in COVID-19: therapeutic opportunities. Cell Biol Int. 2020; 44 (9): 1792–7. DOI: 10.1002/cbin.11403
  31. Tavakolpour S., Rakhshandehroo T., Wei E.X. et al. Lymphopenia during the COVID-19 infection: What it shows and what can be learned. Immunol Lett. 2020; 225: 31–2. DOI: 10.1016/j.imlet.2020.06.013
  32. Cheng Y., Zhao H., Song P. et al. Dynamic changes of lymphocyte counts in adult patients with severe pandemic H1N1 influenza A. J Infect Public Health. 2019; 12 (6): 878–83. DOI: 10.1016/j.jiph.2019.05.017
  33. Kong M., Zhang H., Cao X. et al. Higher level of neutrophil-to-lymphocyte is associated with severe COVID-19. Epidemiol Infect. 2020; 148: e139. DOI: 10.1017/S0950268820001557
  34. Danwang C., Endomba F.T., Nkeck J.R. et al. A meta-analysis of potential biomarkers associated with severity of coronavirus disease 2019 (COVID-19). Biomark Res. 2020; 8 (1): 37. DOI: 10.1186/s40364-020-00217-0
  35. Malik P., Patel U., Mehta D. et al. Biomarkers and outcomes of COVID-19 hospitalisations: systematic review and meta-analysis. BMJ Evid Based Med. 2020; 26 (3): 107–8. DOI:10.1136/bmjebm-2020-111536
  36. Ou M., Zhu J., Ji P. et al. Risk factors of severe cases with COVID-19: a meta-analysis. Epidemiol Infect. 2020; 148: e175. DOI: 10.1017/S095026882000179X
  37. Hu F., Chen F., Ou Z. et al. A compromised specific humoral immune response against the SARS-CoV-2 receptor-binding domain is related to viral persistence and periodic shedding in the gastrointestinal tract. Cell Mol Immunol. 2020; 17 (11): 1119–25. DOI: 10.1038/s41423-020-00550-2
  38. Lamers M.M., Beumer J., Vaart J. et al. SARS-CoV-2 productively infects human gut enterocytes. Science. 2020; 369 (6499): 50–4. DOI: 10.1126/science.abc1669
  39. Xiao F., Tang M., Zheng X. et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020; 158 (6): 1831–1833.e3. DOI: 10.1053/j.gastro.2020.02.055
  40. Zang R., Castro M.F.G., McCune B.T. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. 2020; 5 (47): eabc3582. DOI: 10.1126/sciimmunol.abc3582
  41. Cheung K.S., Hung I.F.N., Chan P.P.Y. et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong Cohort: systematic review and meta-analysis. Gastroenterology. 2020; 159 (1): 81–95. DOI: 10.1053/j.gastro.2020.03.065
  42. Mao R., Qiu Y., He J.S. et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020; 5 (7): 667–8. DOI: 10.1016/S2468-1253(20)30126-6
  43. Liang L., Yang B., Jiang N. et al. Three-month Follow-up Study of Survivors of Coronavirus Disease 2019 after Discharge. J Korean Med Sci. 2020; 35 (47): e418. DOI: 10.3346/jkms.2020.35.e418
  44. Petersen M.S., Kristiansen M.F., Hanusson K.D. et al. Long COVID in the Faroe Islands – a longitudinal study among non-hospitalized patients. Clin Infect Dis. 2021; 73 (11): e4058–e4063. DOI: 10.1093/cid/ciaa1792
  45. Zhao Y.M., Shang Y.M., Song W.B. et al. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. EClinicalMedicine. 2020; 25: 100463. DOI: 10.1016/j.eclinm.2020.100463
  46. Yeoh Y.K., Zuo T., Lui G.C.-Y. et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021; 70 (4): 698–706. DOI: 10.1136/gutjnl-2020-323020
  47. Zuo T., Zhan H., Zhang F. et al. Alterations in Fecal Fungal Microbiome of Patients With COVID-19 During Time of Hospitalization until Discharge. Gastroenterology. 2020; 159 (4): 1302–1310.e5. DOI: 10.1053/j.gastro.2020.06.048
  48. Zuo T., Zhang F., Lui G.C.Y. et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020; 159 (3): 944–955.e8. DOI: 10.1053/j.gastro.2020.05.048
  49. Belkaid Y., Hand T.W. Role of the microbiota in immunity and inflammation. Cell. 2014; 157 (1): 121–50. DOI: 10.1016/j.cell.2014.03.011
  50. Yong S.J., Tong T., Chew J. et al. Antidepressive mechanisms of probiotics and their therapeutic potential. Front Neurosci. 2019; 13: 1361. DOI: 10.3389/fnins.2019.01361
  51. Williamson E.J., Walker A.J., Bhaskaran K. et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020; 584 (7821): 430–6. DOI: 10.1038/s41586-020-2521-4
  52. Huang C., Huang L., Wang Y. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021; 397 (10270): 220–32. DOI: 10.1016/S0140-6736(20)32656-8
  53. Бородулина Е.А., Широбоков Я.Е., Гладунова Е.П. и др. Диагностика и фармакотерапия вирус-ассоциированных поражений легких. Клиническая фармакология и терапия. 2020; 29 (3): 61–6. DOI: 10.32756/0869-5490-2020-3-61-66
  54. Burnham E.L., Janssen W.J., Riches D.W. et alP. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance. Eur Respir J. 2014; 43 (1): 276–85. DOI: 10.1183/09031936.00196412
  55. Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. N Engl J Med. 2020; 383 (2): 120–8. DOI: 10.1056/NEJMoa2015432
  56. Chippa V., Aleem A., Anjum F. Post Acute Coronavirus (COVID-19) Syndrome. [Updated 2021 Oct 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2021.
  57. Lindner D., Fitzek A., Bräuninger H. et al. Association of Cardiac Infection With SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases. JAMA Cardiol. 2020; 5 (11): 1281–5. DOI: 10.1001/jamacardio.2020.3551
  58. Solomon I.H., Normandin E., Bhattacharyya S. et al. Neuropathological Features of COVID-19. N Engl J Med. 2020; 383 (10): 989–92. DOI: 10.1056/NEJMc2019373
  59. Peleg Y., Kudose S., D’Agati V. et al. Acute Kidney Injury Due to Collapsing Glomerulopathy Following COVID-19 Infection. Kidney Int Rep. 2020; 5 (6): 940–5. DOI: 10.1016/j.ekir.2020.04.017
  60. Kaseda E.T., Levine A.J. Post-traumatic stress disorder: A differential diagnostic consideration for COVID-19 survivors. Clin Neuropsychol. 2020; 34 (7–8): 1498–514. DOI: 10.1080/13854046.2020.1811894
  61. Mo X., Jian W., Su Z. et al. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur Respir J. 2020; 55: 2001217. DOI: 10.1183/13993003.01217-2020
  62. Shah A.S., Wong A.W., Hague C.J. et al. A prospective study of 12-week respiratory outcomes in COVID-19-related hospitalisations. Thorax. 2021; 76: 402–4. DOI: 10.1136/thoraxjnl-2020-216308
  63. Carvalho-Schneider C., Laurent E., Lemaignen A. et al. Follow-up of adults with non-critical COVID-19 two months after symptoms’ onset. Clin Microbiol Infect. 2021; 27: 258–63. DOI: 10.1016/j.cmi.2020.09.052
  64. Carfi A., Bernabei R., Landi F. Persistent symptoms in patients after acute COVID19. JAMA. 2020; 324: 603–5. DOI: 10.1001/jama.2020.12603
  65. Nalbandian A., Sehgal K., Gupta A. et al. Post-acute COVID-19 syndrome. Nat Med. 2021; 27: 601–15. DOI: 10.1038/s41591-021-01283-z
  66. Puntmann V.O., Carerj M.L., Wieters I. et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5: 1265–73. DOI: 10.1001/jamacardio.2020.3557
  67. Patell R., Bogue T., Koshy A. et al. Postdischarge thrombosis and hemorrhage in patients with COVID-19. Blood. 2020; 136: 1342–6. DOI: 10.1182/blood.2020007938
  68. Taquet M., Geddes J.R., Husain M. et al. 6-month neurological and psychiatric outcomes in 236379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021; 8 (5): 416–27. DOI: 10.1016/S2215-0366(21)00084-5
  69. Sampaio Rocha-Filho P.A., Voss L. Persistent headache and persistent anosmia associated with COVID-19. Headache. 2020; 60: 1797–9. DOI: 10.1111/head.13941
  70. Liu J.W.T.W., de Luca R.D., Mello Neto H.O. et al. Post- COVID-19 syndrome? New daily persistent headache in the aftermath of COVID-19. Arq Neuropsiquiatr. 2020; 78 (11): 753–4. DOI: 10.1590/0004-282X20200187
  71. Dani M., Dirksen A., Taraborrelli P. et al. Autonomic dysfunction in ‘long COVID’: rationale, physiology and management strategies. Clin Med (Lond). 2021; 21 (1): e63–7. DOI: 10.7861/clinmed.2020-0896
  72. Дедов Д.В. Новая коронавирусная инфекция: клинико-патогенетические аспекты, профилактика, значение витаминов и микроэлементов. Врач. 2022; 33 (2): 47–9. DOI: 10.29296/25877305-2022-02-07
  73. Дедов Д.В., Марченко С.Д. Витамины, железо, цинк, селен, селенсодержащие лекарственные препараты в комплексной профилактике осложнений и лечении больных COVID-19. Фармация. 2022; 71 (1): 5–9. DOI: 10.29296/25419218-2022-01-01