Antibacterial properties of the chemokine CXCL9

DOI: https://doi.org/10.29296/25877305-2022-03-09
Issue: 
3
Year: 
2022

A. Bidzhiev(1); L. Kraeva(1, 2), MD; O. Burgasova(3, 4), MD (1)Pasteur Research Institute of
Epidemiology and Microbiology, Saint Petersburg (2)S.M. Kirov Military Medical Academy, Saint Petersburg
(3)Peoples’ Friendship University of Russia, Moscow (4)N.F. Gamaleya National Research Center for
Epidemiology and Microbiology, Moscow

In recent years, there has been an unprecedented increase in the resistance of bacterial strains to antibiotics. Millions of deaths per year are recorded worldwide due to the spread of antibiotic-resistant strains. However, in the human body there is a little-studied natural system of counteracting microorganisms - chemokines. To investigate the antibacterial properties of the chemokine CXCL9. The conducted study revealed the antibacterial effect of the CXCL9 chemokine on clinically significant bacterial species (Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Corynebacterium diphtheriae, and Listeria monocytogenes). A bactericidal stable activity against the bacteria Listeria monocytogenes was noted within 7 hours after contact with the chemokine CXCL9. The findings demonstrated the presence of antibacterial properties of the chemokine CXCL9 in relation to a number of microorganisms with the different structure of the cell wall.

Keywords: 
the chemokine CXCL9
antibacterial activity
antibiotic resistance



References: 
  1. Naveed M., Chaudhry Z., Bukhari S. A. et al. Antibiotics resistance mechanism. In: Antibiotics and Antimicrobial Resistance Genes in the Environment. Elsevier, 2020; r. 292–312.
  2. Zlotnik A. Perspective: Insights on the Nomenclature of Cytokines and Chemokines. Front Immunol. 2020; 11: 908. DOI: 10.3389/fimmu.2020.00908
  3. Murphy P.M., Baggiolini M., Charo I.F. et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev. 2000; 52 (1): 145–76.
  4. Chensue S.W. Molecular machinations: chemokine signals in host-pathogen interactions. Clin Microbiol Rev. 2001; 14 (4): 821–35. DOI: 10.1128/CMR.14.4.821-835.2001
  5. Mehrad B., Keane M.P., Strieter R.M. Chemokines as mediators of angiogenesis. Thromb Haemost. 2007; 97 (5): 755–62.
  6. Raman D., Baugher P.J., Thu Y.M. et al. Role of chemokines in tumor growth. Cancer Lett. 2007; 256 (2): 137–65. DOI: 10.1016/j.canlet.2007.05.013
  7. Crawford M.A., Burdick M.D., Glomski I.J. et al. Interferon-inducible CXC chemokines directly contribute to host defense against inhalational anthrax in a murine model of infection. PLoS Pathog. 2010; 6 (11): e1001199. DOI: 10.1371/journal.ppat.1001199 Egesten A., Eliasson M., Johansson H.M. et al. The CXC chemokine MIG/CXCL9 is important in innate immunity against Streptococcus pyogenes. J Infect Dis. 2007; 195 (5): 684–93. DOI: 10.1086/510857
  8. Balogh E.P., Faludi I., Virók D.P. et al. Chlamydophila pneumoniae induces production of the defensin-like MIG/CXCL9, which has in vitro antichlamydial activity. Int J Med Microbiol. 2011; 301 (3): 252–9. DOI: 10.1016/j.ijmm.2010.08.020
  9. Crawford M.A., Fisher D.J., Leung L.M. et al. CXC Chemokines Exhibit Bactericidal Activity against Multidrug-Resistant Gram-Negative Pathogens. mBio. 2017; 8 (6): e01549-17. DOI: 10.1128/mBio.01549-17
  10. Yung S.C., Murphy P.M. Antimicrobial chemokines. Front Immunol. 2012; 3: 276. DOI: 10.3389/fimmu.2012.00276
  11. Crawford M.A., Margulieux K.R., Singh A. et al. Mechanistic insights and therapeutic opportunities of antimicrobial chemokines. Semin Cell Dev Biol. 2019; 88: 119–28. DOI: 10.1016/j.semcdb.2018.02.003
  12. Söbirk S.K., Mörgelin M., Egesten A. et al. Human chemokines as antimicrobial peptides with direct parasiticidal effect on Leishmania mexicana in vitro. PLoS One. 2013; 8 (3): e58129. DOI: 10.1371/journal.pone.0058129
  13. Cole A.M., Ganz T., Liese A.M. et al. Cutting edge: IFN-inducible ELR-CXC chemokines display defensin-like antimicrobial activity. J Immunol. 2001; 167 (2): 623–7. DOI: 10.4049/jimmunol.167.2.623
  14. Yang D., Chen Q., Hoover D.M. et al. Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J Leukoc Biol. 2003; 74 (3): 448–55. DOI: 10.1189/jlb.0103024
  15. Frick I.M., Nordin S.L., Baumgarten M. et al. Constitutive and inflammation-dependent antimicrobial peptides produced by epithelium are differentially processed and inactivated by the commensal Finegoldia magna and the pathogen Streptococcus pyogenes. J Immunol. 2011; 187 (8): 4300–9. DOI: 10.4049/jimmunol.1004179
  16. Burkhardt A.M., Tai K.P., Flores-Guiterrez J.P. et al. CXCL17 is a mucosal chemokine elevated in idiopathic pulmonary fibrosis that exhibits broad antimicrobial activity. J Immunol. 2012; 188 (12): 6399–406. DOI: 10.4049/jimmunol.1102903
  17. Linge H.M., Collin M., Nordenfelt P. et al. The human CXC chemokine granulocyte chemotactic protein 2 (GCP-2)/CXCL6 possesses membrane-disrupting properties and is antibacterial. Antimicrob Agents Chemother. 2008; 52 (7): 2599–607. DOI: 10.1128/AAC.00028-08
  18. Kotarsky K., Sitnik K.M., Stenstad H. et al. A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa. Mucosal Immunol. 2010; 3 (1): 40–8. DOI: 10.1038/mi.2009.115