Application of additive 3D printing technologies in traumatology/orthopedics and neurosurgery

DOI: https://doi.org/10.29296/25877305-2021-10-02
Download full text PDF
Issue: 
10
Year: 
2021

A. Yarikov(1)–5, Candidate of Medical Sciences; R. Gorbatov(6), Candidate of Medical Sciences;
I. Stolyarov(2); I. Smirnov(2); Professor A. Fraerman(2), MD; A. Sosnin(1), Candidate of Medical Sciences;
Professor O. Perlmutter(2), MD (1)Volga District Medical Center, Federal Biomedical Agency of Russia, Nizhny
Novgorod (2)City Clinical Hospital Thirty-Nine, Nizhny Novgorod (3)Central City Hospital, Arzamas (4)Central
Medical and Sanitary Unit Fifty, Federal Biomedical Agency of Russia, Sarov (5)City Clinical Hospital
Thirteenth, Nizhny Novgorod (6)Volga Research Medical University, Ministry of Health of Russia, Nizhny
Novgorod

The number of medical specialties using additive technologies for the diagnosis and treatment of patients is increasing every year. There is the most active growth in the number of scientific publications, designed therapeutic procedures, and cured patients in traumatology, orthopedics, and neurosurgery. The number of clinics and surgeons using 3D-printed models for preoperative planning is growing every year. Owing to additive technologies, there is a possibility of personalized medicine products and comprehensive visualization of the area of surgical interest. Practicing surgical approaches and techniques allows one to shorten the time of surgery and the duration of anesthesia, to reduce tissue injury and blood loss. 3D printing implants can significantly improve the results of surgical treatment in traumatic, orthopedic, and neurosurgical patients. New materials and equipment open up new opportunities in the development of this innovative area in medicine.

Keywords: 
traumatology
orthopedics
surgery
3D printing
3D modeling
additive technologies
3D technology
3D printer



It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. 1. Levchenko O.V. Sovremennye metody kranioplastiki. Nejrohirurgija. 2010; 2: 5–13 [Levchenko O.V. Modern methods of cranioplasty. part 1. Russian journal of neurosurgery. 2010; 2: 5–13 (in Russ.)].
  2. 2. Ivanov O.V., Semichev E.V., Shnjakin P.G. i dr. Plastika defektov cherepa: ot autokosti k sovremennym biomaterialam (obzor literatury). Meditsinskaja nauka i obrazovanie Urala. 2018; 19 (3): 143–9 [Ivanov O.V., Semichev E.V., Shnyakin P.G. et al. Reconstraction of cranial bone defects from autotransplantation to modern biomaterials (review). Meditsinskaya nauka i obrazovanie Urala. 2018; 19 (3): 143–9 (in Russ.)].
  3. 3. Baindurashvili A.G., Vissarionov S.V., Poznovich M.S. i dr. Primenenie trehmernoj pechati v hirurgii pozvonochnika i drugoj kostnoj patologii. Sovremennye problemy nauki i obrazovanija. 2019; 6: 194 [Baindurashvili A.G., Vissarionov S.V., Poznovich M.S. et al. The use of three-dimensional printing in spinal surgery and other bone pathology. Modern problems of science and education. 2019; 6: 194 (in Russ.)]. DOI: 10.17513/spno.29359
  4. 4. Karjakin N.N., Gorbatov R.O. 3D-pechat' v meditsine. M.: GEOTAR-Media, 2019; 240 s. [Karyakin N.N., Gorbatov R.O. 3-D Printing in Medicine. M.: GEOTAR-Media, 2019; 240 s. (in Russ.)]. DOI: 10.33029/9704-5163-2-PRI-2019-1-240
  5. 5. Nagibovich O.A., Svistov D.V., Peleshok S.A. i dr. Primenenie tehnologii 3D-pechati v meditsine. Klinicheskaja patofiziologija. 2017; 23 (3): 14–22 [Nagibovich O.A., Svistov D.V., Peleshok S.A. et al. Application of 3D-printing technology in medicine. Klinicheskaya patofiziologiya. 2017; 23 (3): 14–22 (in Russ.)].
  6. 6. Kovalenko R.A., Ptashnikov D.A., Cherebillo V.Ju. i dr. Primenenie individual'nyh 3D modelej v hirurgii pozvonochnika – obzor literatury i pervyj opyt ispol'zovanija. Rossijskij nejrohirurgicheskij zhurnal im. professora A.L. Polenova. 2018; 10 (3-4): 43–8 [Kovalenko R.A., Ptashnikov D.A., Cherebillo V.Yu. et al. Application of individual 3d printed models in spine surgery – literature review and the first experience. Russian Journal of Neurosurgery. 2018; 10 (3-4): 43–8 (in Russ.)].
  7. 7. Kuleshov A.A., Vetrile M.S., Shkarubo A.N. i dr. Additivnye tehnologii v hirurgii deformatsij pozvonochnika. Vestnik travmatologii i ortopedii im. N.N. Priorova. 2018; 4: 19–29 [Kuleshov A.A., Vetrile M.S., Shkarubo A.N. et al. Additive technologies in surgical treatment of spinal deformities. N.N. Priorov Journal of Traumatology and Orthopedics. 2018; 4: 19–29 (in Russ.)]. DOI: 10.17116/vto201803-04119
  8. 8. Kravchuk A.D., Marjahin A.D., Potapov A.A. i dr. Primenenie additivnyh tehnologij v nejrohirurgii. V sb.: Additivnye tehnologii: nastojaschee i buduschee Mat-ly V mezhdunar. konf. 2019; s. 253–74 [Kravchuk A.D., Maryakhin A.D., Potapov A.A. et al. Primenenie additivnykh tekhnologii v neirokhirurgii. V sb.: Additivnye tekhnologii: nastoyashchee i budushchee Mat-ly V mezhdunar. konf. 2019; s. 253–74 (in Russ.)].
  9. 9. Peleshok S.A., Zheleznjak I.S., Ovchinnikov D.V. i dr. Opyt primenenija additivnyh tehnologij v voenno-meditsinskih organizatsijah i voennom innovatsionnom tehnopolise «ERA». Vestnik Rossijskoj voenno-meditsinskoj akademii. 2019; 3 (67): 126–31 [Peleshok S.A., Zheleznyak I.S., Ovchinnikov D.V. et al. The experience of application of additive technologies in the military medical organizations and the military innovation technopolis «ERA». Vestnik Rossiiskoi voenno-meditsinskoi akademii. 2019; 3 (67): 126–31 (in Russ.)].
  10. 10. Safonov M.G., Strogij V.V. Primenenie 3D-pechati v meditsine. Mezhdunarodnyj studencheskij nauchnyj vestnik. 2015; 3–3: 394–5 [Safonov M.G., Strogii V.V. Primenenie 3D-pechati v meditsine. Mezhdunarodnyi studencheskii nauchnyi vestnik. 2015; 3–3: 394–5 (in Russ.)].
  11. 11. Odinokova E.A. 3D-pechat' v meditsine. V sb.: Fizika i meditsina: sozdavaja buduschee sbornik materialov. 2017; s. 140–5 [Odinokova E.A. 3D-pechat’ v meditsine. V sb.: Fizika i meditsina: sozdavaya budushchee sbornik materialov. 2017; s. 140–5 (in Russ.)].
  12. 12. Karjakin N.N., Gorbatov R.O., Novikov A.E. i dr. Hirurgicheskoe lechenie patsientov s opuholjami dlinnyh trubchatyh kostej verhnih konechnostej s ispol'zovaniem individual'nyh implantatov iz kostnozameschajuschego materiala, sozdannyh po tehnologijam 3D-pechati. Genij ortopedii. 2017; 23 (3): 323–30 [Karyakin N.N., Gorbatov R.O., Novikov A.E. et al. Surgical treatment of patients with tumors of long bones of upper limbs using tailored 3D printed bone substitute implants. Geniy ortopedii. 2017; 23 (3): 323–30 (in Russ.)]. DOI: 10.18019/1028-4427-2017-23-3-323-330
  13. 13. Karjakin N.N., Gorbatov R.O. Tehnologija sozdanija individual'nyh ortopedicheskih stelek s ispol'zovaniem 3D pechati. Sovremennye problemy nauki i obrazovanija. 2017; 3: 42 [Karyakin N.N., Gorbatov R.O. Technology of creation of individual 3D printed orthopedic insoles. Modern problems of science and education. 2017; 3: 42 (in Russ.)].
  14. 14. Karjakin N.N., Malyshev E.E., Gorbatov R.O. i dr. Endoprotezirovanie kolennogo sustava s primeneniem individual'nyh napravitelej, sozdannyh s pomosch'ju tehnologij 3D-pechati. Travmatologija i ortopedija Rossii. 2017; 23 (3): 110–8 [Karyakin N.N., Malyshev E.E., Gorbatov R.O. et al. 3D printing technique for patient-specific instrumentation in total knee arthroplasty. Traumatology and Orthopedics of Russia. 2017; 23 (3): 110–8 (in Russ.)]. DOI: 10.21823/2311-2905-2017-23-3-110-118
  15. 15. Gorbatov R.O., Kazakov A.A., Romanov A.D. Razrabotka tehnologii sozdanija individual'nyh ortezov dlja immobilizatsii sustavov verhnej konechnosti s pomosch'ju 3D-pechati. Vestnik VolgGMU. 2018; 3 (67): 124–8 [Gorbatov R.O., Kazakov A.A., Romanov A.D. Development of technology of creation of individual orthoses for the immobilization of joints of the top extremity by means of the 3D press. Journal of VolgSMU. 2018; 3 (67): 124–8 (in Russ.)]. DOI: 10.19163/1994-9480-2018-3(67)-124-128
  16. 16. Karjakin N.N., Shubnjakov I.I., Denisov A.O. i dr. Pravovoe regulirovanie izgotovlenija izdelij meditsinskogo naznachenija s ispol'zovaniem 3D-pechati: sovremennoe sostojanie problemy. Travmatologija i ortopedija Rossii. 2018; 24 (4): 129–36 [Karyakin N.N., Shubnyakov I.I., Denisov A.O. et al. Regulatory Concerns about Medical Device Manufacturing Using 3D Printing: Current State of the Issue. Traumatology and Orthopedics of Russia. 2018; 24 (4): 129–36 (in Russ.)]. DOI: 10.21823/2311-2905-2018-24-4-129-136
  17. 17. Kravchuk A.D., Marjahin A.D., Potapov A.A. i dr. Primenenie additivnyh tehnologij v nejrohirurgii. V sb.: Additivnye tehnologii: nastojaschee i buduschee. Mat-ly V mezhdunar. konf. 2019; s. 253–74 [Kravchuk A.D., Maryakhin A.D., Potapov A.A. et al. Primenenie additivnykh tekhnologii v neirokhirurgii. V sb.: Additivnye tekhnologii: nastoyashchee i budushchee. Mat-ly V mezhdunar. konf. 2019; s. 253–74 (in Russ.)].
  18. 18. Bagaturija G.O. Perspektivy ispol'zovanija 3D-pechati pri planirovanii hirurgicheskih operatsij. Meditsina: teorija i praktika. 2016; 1 (1): 26–35 [Bagaturija G.O. Prospects for the use of 3D-printing when planning surgery. Medicine: Theory and Practice. 2016; 1 (1): 26–35 (in Russ.)].
  19. 19. Prihod'ko A.A., Vinogradov K.A., Vahrushev S.G. Mery po razvitiju meditsinskih additivnyh tehnologij v Rossijskoj Federatsii. Meditsinskie tehnologii. Otsenka i vybor. 2019; 2 (36): 10–5 [Prikhodko A.A., Vinogradov R.A., Vakhrushev S.G. Measures for the Development of Medical Additive Technologies in the Russian Federation. Medical Technologies. Assessment and Choice. 2019; 2 (36): 10–5. (in Russ.)]. DOI: 10.31556/2219-0678.2019.36.2.010-015
  20. 20. Karpov O.E., Gavrjushin S.S., Zamjatin M.N. i dr. Tsifrovye tehnologii v sovremennoj rekonstruktivnoj hirurgii. Vestnik Natsional'nogo mediko-hirurgicheskogo tsentra im. N.I. Pirogova. 2016; 11 (2): 3–8 [Karpov O.Je., Gavrjushin S.S., Zamjatin M.N. et al. Digital technology in modern reconstructive surgery. Bulletin of Pirogov National Medical & Surgical Center. 2016; 11 (2): 3–8 (in Russ.)].
  21. 21. Potapov A.A., Konovalov A.N., Kornienko V.N. i dr. Sovremennye tehnologii i fundamental'nye issledovanija v nejrohirurgii. Vestnik Rossijskoj akademii nauk. 2015; 85 (4): 299 [Potapov A.A., Konovalov A.N., Kornienko V.N. et al. Current technologies and basic research in neurosurgery. Herald of the Russian Academy of Sciences. 2015; 85 (4): 299 (in Russ.)]. DOI: 10.7868/S086958731504009X
  22. 22. Nikolaenko A.N. Primenenie 3D-modelirovanija i trehmernoj pechati v hirurgii (obzor literatury). Medline.ru. Rossijskij biomeditsinskij zhurnal. 2018; 19 (1): 20–44 [Nikolaenko A.N. Application of 3D modeling and three-dimensional printing in surgery (review of literature). Medline.ru. Rossiiskii biomeditsinskii zhurnal. 2018; 19 (1): 20–44 (in Russ.)].
  23. 23. Ivanov V.P., Kim A.V., Hachatrjan V.A. 3D-pechat' v kraniofatsial'noj hirurgii i nejrohirurgii. Opyt FGBU «NMITs im. V.A. Almazova». Nejrohirurgija i nevrologija detskogo vozrasta. 2018; 3 (57): 28–39 [Ivanov V.P., Kim A.V., Khachatryan W.A. 3D-printing in craniofacial surgery and neurosurgery. experience of the Almazov national medical research centre. Neirokhirurgiya i nevrologiya detskogo vozrasta. 2018; 3 (57): 28–39 (in Russ.)].
  24. 24. Mishinov S.V., Stupak V.V., Koporushko N.A. Kranioplastika: obzor metodik i novye tehnologii v sozdanii implantatov. Sovremennoe sostojanie problemy. Politravma. 2018; 4: 82–9 [Mishinov S.V., Stupak V.V., Koporushko N.A. Cranioplasty: a review of methods and new technologies in implants manufacturing. Polytrauma. 2018; 4: 82–9 (in Russ.)].
  25. 25. Kravchuk A.D., Marjahin A.D., Ohlopkov V.A. i dr. Additivnye tehnologii v rekonstruktivnoj hirurgii defektov cherepa. V kn.: 3D-tehnologii v meditsine Mat-ly IV Vseross. nauchno-prakt. konf. 2019; s. 24–5 [Kravchuk A.D., Maryakhin A.D., Okhlopkov V.A. et al. Additivnye tekhnologii v rekonstruktivnoi khirurgii defektov cherepa. V kn.: 3D-tekhnologii v meditsine Mat-ly IV Vseross. nauchno-prakt. konf. 2019; s. 24–5 (in Russ.)].
  26. 26. Ctupak V.V., Koporushko N.A., Mishinov S.V. i dr. Epidemiologicheskie dannye priobretennyh defektov cherepa u bol'nyh, perenesshih cherepno- mozgovuju travmu, na primere krupnogo promyshlennogo goroda (Novosibirska). Politravma. 2019; 1: 6–10 [Stupak V.V., Koporushko N.A., Mishinov S.V. et al. Epidemiological data of acquired skull defects in patients after traumatic brain injury through the example of a big industrial city (Novosibirsk). Polytrauma. 2019; 1: 6–10 (in Russ.)].
  27. 27. Levchenko O.V., Shalumov A.Z., Krylov V.V. Ispol'zovanie bezramnoj navigatsii dlja plasticheskogo ustranenija kostnyh defektov lobno-glaznichnoj lokalizatsii. Annaly plasticheskoj, rekonstruktivnoj i esteticheskoj hirurgii. 2011; 3: 30–6 [Levchenko O.V., Shalumov A.Z., Krylov V.V. Ispol’zovanie bezramnoi navigatsii dlya plasticheskogo ustraneniya kostnykh defektov lobno-glaznichnoi lokalizatsii. Annaly plasticheskoi, rekonstruktivnoi i esteticheskoi khirurgii. 2011; 3: 30–6 (in Russ.)].
  28. 28. Davydov D.V., Levchenko O.V., Drobyshev A.Ju. i dr. Bezramnaja navigatsija v hirurgicheskom lechenii posttravmaticheskih deformatsij i defektov glaznitsy. Prakticheskaja meditsina. 2012; 4–2 (59): 187–91 [Davydov D.V., Levchenko O.V., Drobyshev A.Y. et al. The frameless navigation in the surgical treatment of the post-traumatic deformities and orbital defects. Prakticheskaya meditsina. 2012; 4–2 (59): 187–91 (in Russ.)].
  29. 29. Levchenko O.V., Mihajljukov V.M., Davydov D.V. Bezramnaja navigatsija v hirurgii posttravmaticheskih defektov i deformatsij kranioorbital'noj oblasti. Nejrohirurgija. 2013; 3: 9–14 [Levchenko O.V., Mikhailiukov V.M., Davydov D.V. Frameless navigation system for surgical treatment of posttraumatic defects and cranioorbital deformations. Russian journal of neurosurgery. 2013; 3: 9–14 (in Russ.)]. DOI: 10.17650/1683-3295-2013-0-3-9-14
  30. 30. Ivanov O.V., Semichev E.V., Sobakar' E.E. i dr. Opyt plastiki obshirnyh defektov cherepa titanovymi implantatami. V sb.: Sovremennye tehnologii lechenija patsientov s travmoj oporno-dvigatel'nogo apparata i tsentral'noj nervnoj sistemy Sb. st. nauchno-prakt. konf. Pod red. T.G. Ruksha. 2019; s. 97–102 [Ivanov O.V., Semichev E.V., Sobakar’ E.E. et al. Opyt plastiki obshirnykh defektov cherepa titanovymi implantatami. V sb.: Sovremennye tekhnologii lecheniya patsientov s travmoi oporno-dvigatel’nogo apparata i tsentral’noi nervnoi sistemy Sb. st. nauchno-prakt. konf. Pod red. T.G. Ruksha. 2019; s. 97–102 (in Russ.)].
  31. 31. Ivanov O.V., Semichev E.V., Sobakar' E.G. i dr. Opyt plastiki defektov cherepa titanovymi setchatymi implantatami v Cibirskom nauchno-klinicheskom tsentre FMBA Rossii. V sb.: Aktual'nye voprosy sovremennoj hirurgii. Sb. nauchno-prakt. rabot, posvjasch. 70-letiju zav. kafedroj obschej hirurgii im. prof. M.I. Gul'mana KrasGMU im. prof. V.F. Vojno-Jasenetskogo zasluzhennogo dejatelja nauki RF, zasluzhennogo vracha Rossii, akademika RAEN, professora, doktora meditsinskih nauk Jurija Semenovicha Vinnika. 2018; s. 285–9 [Ivanov O.V., Semichev E.V., Sobakar’ E.G. et al. Opyt plastiki defektov cherepa titanovymi setchatymi implantatami v Cibirskom nauchno-klinicheskom tsentre FMBA Rossii. V sb.: Aktual’nye voprosy sovremennoi khirurgii. Sb. nauchno-prakt. rabot, posvyashch. 70-letiyu zav. kafedroi obshchei khirurgii im. prof. M.I. Gul’mana KrasGMU im. prof. V.F. Voino-Yasenetskogo zasluzhennogo deyatelya nauki RF, zasluzhennogo vracha Rossii, akademika RAEN, professora, doktora meditsinskikh nauk Yuriya Semenovicha Vinnika. 2018; s. 285–9 (in Russ.)].
  32. 32. Holodilov A.A., Jakovleva A.V. Innovatsionnoe primenenie additivnyh tehnologij v meditsine. Molodoj uchenyj. 2019; 5 (243): 35–8 [Kholodilov A.A., Yakovleva A.V. Innovatsionnoe primenenie additivnykh tekhnologii v meditsine. Molodoi uchenyi. 2019; 5 (243): 35–8 (in Russ.)]
  33. 33. Levchenko O.V., Shalumov A.Z., Krylov V.V. Plastika defektov lobno-glaznichnoj lokalizatsii s ispol'zovaniem bezramnoj navigatsii. Nejrohirurgija. 2010; 3: 30–5 [Levchenko O.V., Shalumov A.Z., Krylov V.V. Plastic repair of fronto-orbital defects using frameless navigation. Russian journal of neurosurgery. 2010; 3: 30–5 (in Russ.)].
  34. 34. Koporushko N.A., Stupak V.V., Mishinov S.V. i dr. Etiologija i epidemiologija priobretennyh defektov kostej cherepa, poluchennyh pri razlichnoj patologii tsentral'noj nervnoj sistemy, i chislo bol'nyh, nuzhdajuschihsja v ih zakrytii, na primere krupnogo promyshlennogo goroda. Sovremennye problemy nauki i obrazovanija. 2019; 2: 120 [Koporushko N.A., Stupak V.V.1, Mishinov S.V. et al. Etiology and epidemiology of acquired defects of the skull bones, obtained with different pathologies of the central nervous system and the number of patients needing to their closed case for large industrial city. Modern problems of science and education. 2019; 2: 120 (in Russ.)].
  35. 35. Abe M., Tabuchi K., Goto M. Et al. Model-based surgical planning and simulation of cranial base surgery. Neurol Med Chir (Tokyo). 1998; 38 (11): 746–50. DOI: 10.2176/nmc.38.746
  36. 36. Müller A., Krishnan K. G., Uhl E. et al. The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg. 2003;14 (6): 899–914. DOI: 10.1097/00001665-200311000-00014
  37. 37. Eolchijan S.A. Plastika slozhnyh defektov cherepa implantatami iz titana i polietereterketona (PEEK), izgotovlennymi po SAD/SAM tehnologijam. Zhurnal «Voprosy nejrohirurgii» im. N.N. Burdenko. 2014; 78 (4): 3–13 [Eolchiian S.A. Complex skull defects reconstruction with SAD/SAM titanium and polyetheretherketone (PEEK) implants. Zhurnal Voprosy Neirokhirurgii Imeni N.N. Burdenko. 2014; 78 (4): 3–13 (in Russ.)].
  38. 38. Höhne J., Werzmirzowsky K., Ott C. et al. Outcomes of cranioplasty with preformed titanium versus freehand molded polymethylmethacrylate implants. J Neurol Surg A Cent Eur Neurosurg. 2018; 79 (3): 200–5. DOI: 10.1055/s-0037-1604362
  39. 39. Luo J.M., Liu B., Xie Z.Y. et al. Comparison of manually shaped and computer shaped titanium mesh for repairing large frontotemporoparietal skull defects after traumatic brain injury. Neurosurgery Focus. 2012; 33 (1): 1–5. DOI: 10.3171/2012.2.focus129
  40. 40. Tan E.T.W., Ling J.M., Dinesh S.K. The feasibility of producing patient-specific acrylic cranioplasty implants with a low-cost 3D printer. J Neurosurg. 2016; 124 (5): 1531–7. DOI: 10.3171/2015.5.jns15119
  41. 41. Burtsev A.V., Gubin A.V., Rjabyh S.O. i dr. Primenenie 3D-modelirovanija i pechati pri zadnej stabilizatsii shejnogo otdela pozvonochnika vintovymi konstruktsijami. V kn.: 3D-tehnologii v meditsine. Mat-ly IV Vseross. nauchno-prakt. konf. 2019; s. 10–1 [Burtsev A.V., Gubin A.V., Ryabykh S.O. et al. Primenenie 3D-modelirovaniya i pechati pri zadnei stabilizatsii sheinogo otdela pozvonochnika vintovymi konstruktsiyami. V kn.: 3D-tekhnologii v meditsine. Mat-ly IV Vseross. nauchno-prakt. konf. 2019; s. 10–1 (in Russ.)].
  42. 42. Burtsev A.V., Pavlova O.M., Rjabyh S.O. i dr. Komp'juternoe 3D-modelirovanie s izgotovleniem individual'nyh lekal dlja navigirovanija vvedenija vintov v shejnom otdele pozvonochnika. Hirurgija pozvonochnika. 2018; 15 (2): 33–8 [Burtsev A.V., Pavlova O.M., Ryabykh S.O., Gubin A.V. Computer 3D-modeling of patient-specific navigational template for cervical screw insertion. Hirurgiâ pozvonočnika = Spine Surgery. 2018; 15 (2): 33–8 (in Russ.)]. DOI: 10.14531/ss2018.2.33-38
  43. 43. D’Urso P., Askin G., Earwaker J. Spinal biomodeling. Spine (Phila Pa 1976). 1999; 24: 1247–51. DOI: 10.1097/00007632-199906150-00013
  44. 44. van Dijk M., Smit T.H., Jiya T.U. et al. Polyurethane real-size models used in planning complex spinal surgery. Spine (Phila Pa 1976). 2001; 26: 1920–6. DOI: 10.1097/00007632-200109010-00020
  45. 45. Izatt M.T., Thorpe P.L.P.J., Thompson R.G. et al. The use of physical biomodelling in complex spinal surgery. Eur Spine J. 2007; 16: 1507–18. DOI: 10.1007/s00586-006-0289-3
  46. 46. Mao K., Wang Y., Xiao S. et al. Clinical application of computer-designed polystyrene models in complex severe spinal deformities: a pilot study. Eur Spine J. 2010; 19 (5): 797–802. DOI: 10.1007/s00586-010-1359-0
  47. 47. Wu A.-M., Shao Z.-X., Wang J.-S. et al. The Accuracy of a Method for Printing Three-Dimensional Spinal Models. PLoS One. 2015; 10 (4): e0124291. DOI: 10.1371/journal.pone.0124291
  48. 48. Kovalenko R.A., Rudenko V.V., Kashin V.A. i dr. Primenenie individual'nyh 3D-navigatsionnyh matrits dlja transpedikuljarnoj fiksatsii subaksial'nyh shejnyh i verhnegrudnyh pozvonkov. Hirurgija pozvonochnika. 2019; 16 (2): 35–41 [Kovalenko R.A., Rudenko V.V., Kashin V.A. et al. Application of patient-specific 3D navigation templates for pedicle screw fixation of subaxial and upper thoracic vertebrae. Hirurgiâ pozvonočnika = Spine Surgery. 2019; 16 (2): 35–41 (in Russ.)]. DOI: 10.14531/ss2019.2.35-41
  49. 49. Snetkov A.A., Gorbatjuk D.S., Panteleev A.A. i dr. Analiz primenenija 3D-prototipirovanija pri hirurgicheskoj korrektsii vrozhdennyh kifoskoliozov. Hirurgija pozvonochnika. 2020; 17 (1): 42–53 [Snetkov A.A., Gorbatyuk D.S., Panteleyev A.A. et al. Analysis of the 3D prototyping in the surgical correction of congenital kyphoscoliosis. Hirurgiâ pozvonočnika = Spine Surgery. 2020; 17 (1): 42–53 (in Russ.)]. DOI: 10.14531/ss2020.1.42-53
  50. 50. Berasi C.C., Berend K.R., Adams J.B. et al. Are custom triflange acetabular components effective for reconstruction of catastrophic bone loss? Clin Orthop Relat Res. 2014; 473 (2): 528–35. DOI: 10.1007/s11999-014-3969-z