The significance of radial endosonography of the lung parenchyma in the bronchoscopic diagnosis of PERIPHERAL PULMONARY LESIONS of tuberculous genesis

DOI: https://doi.org/10.29296/25877305-2021-07-10
Download full text PDF
Issue: 
7
Year: 
2021

I. Shabalina, Candidate of Medical Sciences; Yu. Turovtseva; A. Popova; T. Smirnova, Candidate
of Medical Sciences; E. Larionova, Candidate of Biological Sciences; N. Karpina, MD; Professor A. Ergeshov,
MD Central Research Institute of Tuberculosis, Moscow

The minimally invasive differential diagnosis of peripheral pulmonary lesions (PPLs) is an urgent clinical problem, especially in high tuberculosis (TB) burden countries. Objective: to evaluate the comparative effectiveness of bronchoscopic biopsies with radial endobronchial ultrasonography (rEBUS navigation) and biopsies in conventional bronchoscopy (BS) with computed tomography (CT)-guided navigation in the diagnosis of PPLs of non-cancer genesis. Subjects and methods. The investigation enrolled 158 patients (78 males, 80 females) with PPLs, as evidenced by chest CT (CCT), and with a negative sputum microbiological test for Mycobacterium tuberculosis. The patients were divided into 2 groups: 1) 82 patients undergoing BS with rEBUS navigation; 2) 76 patients having BS with CT-guided navigation. For a comprehensive microbiological and cytomorphological study after rEBUS navigation, the patients underwent bronchoalveolar lavage (BAL) (n=121), brush biopsy (n=103), bronchial washings (n=31), and transbronchial lung biopsy (n=25). Results. The diagnosis of TB was verified with BS in 103 (65.2%) patients; it was significantly more often in the samples from the patients undergoing rEBUS navigation than from those having CT-guided navigation (80.5% vs. 48.7% of cases, respectively; p

Keywords: 
phthisiology
radial endobronchial ultrasonography
bronchoscopy
tuberculosis
polymerase chain reaction
BACTEC MGIT 960
bronchoalveolar lavage
bronchial washings
brush biopsy



It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Gombolevskij V.A., Chernina V.Ju., Blohin I.A. i dr. Osnovnye dostizhenija nizkodoznoj komp'juternoj tomografii v skrininge raka legkogo. Tuberkulez i bolezni legkih. 2021; 99 (1): 61–70 [Gombolevskiy V.A., Chernina V.Yu., Blokhin I.A, et al. Main achievements of low-dose computed tomography in lung cancer screening. Tuberculosis and Lung Diseases. 2021; 99 (1): 61–70 (in Russ.)]. DOI: 10.21292/2075-1230-2021-99-1-61-70
  2. Ergeshov A.E. Tuberkulez v Rossijskoj Federatsii: situatsija, problemy i perspektivy. Vestnik Rossijskoj akademii meditsinskih nauk. 2018; 73 (5): 330–7 [Ergeshov A. Tuberculosis in the Russian Federation: situation, challenges and perspectives. Annals of the Russian academy of medical sciences. 2018; 73 (5): 330–7 (in Russ.)]. DOI: 10.15690/vramn1023
  3. Atkins N.K., Marjara J., Kaifi J.T. et al. Role of Computed Tomography-guided Biopsies in the Era of Electromagnetic Navigational Bronchoscopy: A Retrospective Study of Factors Predicting Diagnostic Yield in Electromagnetic Navigational Bronchoscopy and Computed Tomography Biopsies. J Clin Imaging Sci. 2020; 10: 33. DOI: 10.25259/JCIS_53_2020
  4. Herth F.J., Ernst A., Becker H.D. Endobronchial ultrasound-guided transbronchial lung biopsy in solitary pulmonary nodules and peripheral lesions. Eur Respir J. 2002; 20: 972–4. DOI: 10.1183/09031936.02.00032001
  5. Kurimoto N., Miyazawa T., Okimasa S. et al. Endobronchial ultrasonography using a guide sheath increases the ability to diagnose peripheral pulmonary lesions endoscopically. Chest. 2004; 126: 959–65. DOI: 10.1378/chest.126.3.959
  6. Chan A., Devanand A., Low S.Y. et al. Radial endobronchial ultrasound in diagnosing peripheral lung lesions in a high tuberculosis setting. BMC Pulm Med. 2015; 15: 90. DOI: 10.1186/s12890-015-0089-9
  7. Lai R.S., Lee S.S., Ting Y.M. et al. Diagnostic value of transbronchial lung biopsy under fluoroscopic guidance in solitary pulmonary nodule in an endemic area of tuberculosis. Respir Med. 1996; 90 (3): 139–43. DOI: 10.1016/s0954-6111(96)90155-9
  8. Chung Y.H., Lie C.H., Chao T.Y. et al. Endobronchial ultrasonography with distance for peripheral pulmonary lesions. Respir Med. 2007; 101: 738–45. DOI: 10.1016/j.rmed.2006.08.014
  9. Moon S.M., Choe J., Jeong B.H. et al. Diagnostic Performance of Radial Probe Endobronchial Ultrasound without a GuideSheath and the Feasibility of Molecular Analysis. Tuberc Respir Dis. 2019; 82 (4): 319–27. DOI: 10.4046/trd.2018.0082
  10. Mamaev A.N., Kudlaj D.A. Statisticheskie metody v meditsine. M.: Prakticheskaja meditsina, 2021; 136 s. [Mamaev A.N., Kudlay D.A. Statisticheskie metody v meditsine. M.: Prakticheskaya meditsina, 2021; 136 s. (in Russ.)].
  11. Lin S.M. et al. Diagnostic value of endobronchial ultrasonography for pulmonary tuberculosis. J Thorac Cardiovasc Surg. 2009; 138 (1): 179–84. DOI: 10.1016/j.jtcvs.2009.04.004
  12. Lin S.M., Ni Y.L., Kuo C.H. et al. Endobronchial ultrasound increases the diagnostic yields of polymerase chain reaction and smear for pulmonary tuberculosis. J Thorac Cardiovasc Surg. 2010; 139 (6): 1554–60. DOI: 10.1016/j.jtcvs.2010.02.019
  13. Bodal V.K., Bal M.S., Bhagat S. et al. Fluorescent microscopy and Ziehl-Neelsen staining of bronchoalveolar lavage, bronchial washings, bronchoscopic brushing and post bronchoscopic sputum along with cytological examination in cases of suspected tuberculosis. Indian J Pathol Microbiol. 2015; 58 (4): 443–7. DOI: 10.4103/0377-4929.168849
  14. Liu X., Hou X.F., Gao L.et al. Indicators for prediction of Mycobacterium tuberculosis positivity detected with bronchoalveolar lavage fluid. J Infect Dis Poverty. 2018; 7 (1): 22. DOI: 10.1186/s40249-018-0403-x
  15. Ahmad M., Ibrahim W.H., Sarafandi S.A. Diagnostic value of bronchoalveolar lavage in the subset of patients with negative sputum/smear and mycobacterial culture and a suspicion of pulmonary tuberculosis. Int J Infect Dis. 2019; 82: 96–101. DOI: 10.1016/j.ijid.2019.03.02113
  16. Sevast'janova E.V., Puzanov V.A., Smirnova T.G. i dr. Otsenka kompleksa mikrobiologicheskih i molekuljarno-geneticheskih metodov issledovanija dlja diagnostiki tuberkuleza. Tuberkulez i bolezni legkih. 2015; 1: 35–41 [Sevostyanova E.V., Puzanov V.A., Smirnova T.G. et al. ssessment of a set of microbiological and molecular genetic studies for the diagnosis of tuberculosis. Tuberculosis and Lung Diseases. 2015; 1: 35–41 (in Russ.)]. DOI: 10.21292/2075-1230-2015-0-1-35-41
  17. To K.W., Kam K.M., Chan D.P.C. et al. Utility of GeneXpert in analysis of bronchoalveolar lavage samples from patients with suspected tuberculosis in an intermediate-burden setting. J Infect. 2018; 77 (4): 296–301. DOI: 10.1016/j.jinf.2018.06.011
  18. Karpina N.L., Asanov R.B., Shishkina E.R. i dr. Sovremennyj vzgljad na diagnosticheskie oshibki pri polostnyh obrazovanijah v legkih. Vrach. 2021; 32 (2): 32–7 [Karpina N., Asanov R., Shishkina E. et al. A modern view on diagnostic errors in pulmonary cavitation. Vrach. 2021; 32 (2): 32–7 (in Russ.)]. DOI: 10.29296/25877305-2021-02-06
  19. Kim Y.W., Kwon B.S., Lim S.Y. et al. Diagnostic value of bronchoalveolar lavage and bronchial washing in sputum-scarce or smear-negative cases with suspected pulmonary tuberculosis: a randomized study. Clin Microbiol Infect. 2020; 26 (7): 911–6. DOI: 10.1016/j.cmi.2019.11.013
  20. Boonsarngsuk V., Suwannaphong S., Laohavich C. Combination of adenosine deaminase activity and polymerase chain reaction in bronchoalveolar lavage fluid in the diagnosis of smear-negative active pulmonary tuberculosis. Int J Infect Dis. 2012; 16: 663–8. DOI: 10.1016/j.ijid.2012.05.006
  21. Kumar R., Singh M., Gupta N. et al. Bronchoscopy in immediate diagnosis of smear negative tuberculosis. Pneumonol Alergol Pol. 2014; 82 (5): 410–4. DOI: 10.5603/PiAP.2014.0053