HAC (Russian)
RSCI (Russian)
Ulrichsweb (Ulrich’s Periodicals Directory)
Scientific Indexing Services


DOI: https://doi.org/10.29296/25877305-2021-04-14

S. Kim(1, 2); A. Pushkin(1)–3, Candidate of Medical Sciences; Professor S. Rukavishnikova(1)–3,
Biol. Dr.; V. Yakovlev(4), MD; A. Narkevich(5), Candidate of Medical Sciences (1)City Multi-field Hospital
№2, Saint-Petersburg (2)Saint Petersburg Institute of Bioregulation and Gerontology (3)I.P. Pavlov First
Saint Petersburg State Medical University (4)S.M. Kirov Military Medical Academy, Saint-Petersburg (5)Prof.
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Age is a reliable predictor of poor outcomes in acute coronary syndrome (ACS). In this particular meaning, the main risk factor in elderly patients – senile asthenia syndrome (SAS) or «frailty», is acquiring. The aim of this study is to develop a mathematical logistic regression model for other patients with acute coronary syndrome and to assess its quality in comparison with research tools commonly used for the comprehensive geriatric assessment of patients with ACS. Material and methods. To construct mathematical models of logistic regression, data on 300 patients with ACS were used. 50 (16.7%) patients were diagnosed with myocardial infarction with ST segment elevation, 126 (42.0%) patients had myocardial infarction without ST segment elevation, and 124 (41.3%) patients had unstable angina pectoris. Frailty was assessed using two scales: the Green frailty rating scale and the Fried frailty rating scale. In the course of the study, mathematical models of logistic regression were constructed using the «Enter» methods and step-by-step direct and reverse methods. Results. Indicators of sensitivity, specificity and accuracy in assessing the frailty of patients with ACS when using a model built using the reverse stepwise method, have maximum values and are respectively 86.3 (80.1; 90.7%), 90.8 (84.9; 94.5%) and 88.4 (86.0; 89.7%). With a decrease in the number of parameters measured in a patient from 7 to 4, the indices of sensitivity, specificity and accuracy are lower and amount to 81.3 (74.5; 86.5%), 87.2 (80.7; 91.8%), 84.1 (81.5; 85.7%). Conclusion. In the course of the study, three mathematical models of logistic regression were built, which allow assessing the fragility of patients with ACS, which can be used in an emergency, at the prehospital stage and after discharge from the hospital.

acute coronary syndrome
senile asthenia syndrome
rating scales
logistic regression

  1. Beard J.R., Officer de Carvalho I.A., Sadana R. et al. The World report on ageing and health: a policy framework for healthy ageing. Lancet. 2016; 387 (10033): 2145–54. DOI: 10.1016/S0140-6736(15)00516-4
  2. Shanmugam V., Harper R., Meredith I. et al. An overview of PCI in the very elderly. J Geriatr Cardiol. 2015; 12 (2): 174–84. DOI: 10.11909/j.issn.1671-5411.2015.02.012
  3. Agafonova O.V., Gritsenko T.A., Bogdanova Ju.V. i dr. Poliklinicheskaja terapija: Uchebnik. Pod red. D.I. Davydkina, Ju.V. Schukina. 2-e izd., pererab. i dop. M.: GEOTAR-Media, 2020; 840 s. [Agafonova O.V., Gritsenko T.A., Bogdanova Yu.V. et al. Poliklinicheskaya terapiya: Uchebnik. Pod red. D.I. Davydkina, Yu.V. Shchukina. 2-e izd., pererab. i dop. M.: GEOTAR-Media, 2020; 840 s. (in Russ.)]. DOI: 10.33029/9704-5545-6-PLT-2020-1-840
  4. Angela Y.C., Vegard F.S., Stefanos T. et al. Measuring population ageing: an analysis of the Global Burden of Disease Study 2017. Lancet Public Health. 2019; 4: e159–e167. DOI: 10.1016/S2468-2667(19)30019-2
  5. Hogan D.B., MacKnight C., Bergman H. Steering Committee. Canadian Initiative on Frailty and Aging. Models, definitions, and criteria of frailty. Aging Clin. Exp. Res. 2003; 15 (3): 1–29.
  6. Manthorpe J., Iliffe S. Frailty – from bedside to buzzword? J Integrated Care. 2015; 23 (3): 120–8. DOI: 10.1108/JICA-01-2015-0007
  7. Fried L., Tangen C., Walston J. et al. Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001; 56: 146–56. DOI: 10.1093/gerona/56.3.m146
  8. Sanchis J., Bonanad C., Ruiz V. et al. Frailty and other geriatric conditions for risk stratification of older patients with acute coronary syndrome. Am Heart J. 2014; 168: 784–91. DOI: 10.1016/j.ahj.2014.07.022
  9. Sanchis J., Ruiz C., Bonanad G. et al. Prognostic value of geriatric conditions beyond age after acute coronary syndrome. Mayo Clin Proc. 2017; 92 (6): 934–9. DOI: 10.1016/j.mayocp.2017.01.018
  10. Zhang S., Meng H., Chen Q. et al. Is frailty a prognostic factor for adverse outcomes in older patients with acute coronary syndrome? Aging Clin Exp Res. 2020; 32: 1435–42. DOI: 10.1007/s40520-019-01311-6
  11. Hao Q., Zhou L., Dong B. et al. The role of frailty in predicting mortality and readmission in older adults in acute care wards: a prospective study. Sci Rep. 2019; 9 (1): 1207. DOI: 10.1038/s41598-018-38072-7
  12. Elisabetta T., Rita P., Simone B. et al. Frailty in patients admitted to hospital for acute coronary syndrome: when, how and why? J Geriatr Cardiol. 2019; 16 (2): 129–37. DOI: 10.11909/j.issn.1671-5411.2019.02.005
  13. Jeremy W., Thomas R., Susan Z. et al. Integrating Frailty Research into the Medical Specialties-Report from a U13 Conference. J Am Geriatr Soc. 2017; 65 (10): 2134–9. DOI: 10.1111/jgs.14902
  14. Pablo D.V., Albert A.S., Maria T.V. et al. Recommendations of the Geriatric Cardiology Section of the Spanish Society of Cardiology for the Assessment of Frailty in Elderly Patients With Heart Disease. Rev Esp Cardiol (Engl Ed). 2019; 72 (1): 63–71. DOI: 10.1016/j.rec.2018.06.035
  15. Baldwin M.R., Reid M.C., Westlake A.A. et al. The feasibility of measuring frailty to predict disability and mortality in older medical intensive care unit survivors. J Crit Care. 2014; 29 (3): 401–8. DOI: 10.1016/j.jcrc.2013.12.019
  16. Papachristou E., Wannamethee S., Lennon L. et al. Ability of self-reported frailty components to predict incident disability, falls, and all-cause mortality: results from a population-based study of older British men. J Am Med Dir Assoc. 2017; 18 (2): 152–7. DOI: 10.1016/j.jamda.2016.08.020
  17. Nidadavolu L.S., Ehrlich A.L., Sieber F.E. Preoperative evaluation of the frail patient. Anesth Analg. 2020; 130 (6): 1493–503. DOI: 10.1213/ANE.0000000000004735
  18. Graham A., Brown C. 4th. Frailty, aging, and cardiovascular surgery. Anesth Analg. 2017; 124 (4): 1053–60. DOI: 10.1213/ANE.0000000000001560
  19. Taneja S., Mitnitski A., Rockwood K. et al. Dynamical network model for age-related health deficits and mortality. Phys Rev E. 2016; 93 (2): 022309. DOI: 10.1103/PhysRevE.93.022309
  20. Mitnitski A., Rutenberg A., Farrell S. et al. Aging, frailty and complex networks. Biogerontology. 2017; 18 (4): 433–46. DOI: 10.1007/s10522-017-9684-x
  21. Farrell S., Mitnitski A., Rockwood K. et al. Network model of human aging: Frailty limits and information measures. Phys Rev E. 2016; 94 (5–1): 052409. DOI: 10.1103/PhysRevE.94.052409
  22. Ambale-Venkatesh B., Yang X., Wu C. et al. cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis. Circ Res. 2017; 121 (9): 1092–101. DOI: 10.1161/CIRCRESAHA.117.311312
  23. Juárez-Cedillo T., Basurto Acevedo L., Vega-Garcia S. et al. Prevalence of anemia and its impact on the state of frailty in elderly people living in the community: SADEM study 2014. Ann Hematol. 2014; 14 (2): 395–402. DOI: 10.1007/s00277-014-2155-4
  24. Kong S., Ahn D., Kim B. et al. A novel fracture prediction model using machine learning in a community-based cohort. JBMR Plus. 2020; 4 (3): e10337. DOI: 10.1002/jbm4.10337
  25. Fuentes-Garcia A. Katz Activities of Daily Living Scale. In: Michalos A.C. Encyclopedia of Quality of Life and Well-Being Research. N.: Springer, Dordrecht. 2014; p.311. DOI: 10.1007/978-94-007-0753-5_1572
  26. Katz S., Downs T.D., Cash H.R. et al. Progress in Development of the Index of ADL. Gerontologist. 1970; 10 (1): 20–30. DOI: 10.1093/geront/10.1_Part_1.20
  27. International Physical Activity Questionnaire. Home. Retrieved available at: https://sites.google.com/site/theipaq [Accessed 18.10.2020].
  28. Lee P.H., Macfarlane D.J., Lam T.H. et al. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int J Behav Nutr Phys Act. 2011; 8: 115. DOI: 10.1186/1479-5868-8-115
  29. Sanchez-Lastra M., Martinez-Lemos I., Cancela J. et al. Physical activity questionnaires: a systematic review and analysis of their psychometric properties in Spanish population over 60 years old. Rev Esp Salud Publica. 2018; 92: e201805018.
  30. Charlson M., Pompei P., Ales K. et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987; 40 (5): 373–83. DOI: 10.1016/0021-9681(87)90171-8
  31. Tseng S., Liu L., Peng L. et al. Development and validation of a tool to screen for cognitive frailty among community-dwelling elders. J Nutr Health Aging. 2019; 23: 904–9. DOI: 10.1007/s12603-019-1235-5
  32. Aimo A., Barison A. Mammini C. et al. The Barthel Index in elderly acute heart failure patients. Frailty matters. Int J Cardiol. 2018; 254: 240–1. DOI: 10.1016/j.ijcard.2017.11.010