The effect of Thymalin on the immune system, hemostasis and cytokines level in patients with various diseases. Prospects for application in case of COVID-19

DOI: https://doi.org/10.29296/25877305-2020-07-03
Download full text PDF
Issue: 
7
Year: 
2020

Professor B. Кuznik(1, 2), MD; Professor V. Khavinson(3, 4), Corresponding Member of RAS
(1)Chita State Medical Academy (2)Innovative Clinic of the Health Academy, Chita (3)Saint Petersburg
Institute of Bioregulation and Gerontology (4)Pavlov Institute of Physiology RAS, Saint Petersburg

The review evidences the data on the status of COVID-19 patients with lymphocytopenia, violation of the relationship between subpopulations of T-lymphocytes, NK-cells, T- and B-lymphocytes. The appearance of a «cytokine storm», accompanied by an increase in the concentration of pro-inflammatory cytokines, was detected in these patients. At the same time, there occurs hypercoagulation and increased concentration of fibrinogen and D-dimer. COVID-19 patients manifested the development of thrombotic microangiopathy, thrombosis, disseminated intravascular coagulation and multiple organ failure, which often resulted in death. Administration of the peptide immunocorrector Thymalin in case of acute and chronic diseases and injuries led to normalization of cellular and humoral immunity, decrease of the pro-inflammatory cytokines amount, elimination of the «cytokine storm» or inhibition of its development, and reduction of the intravascular coagulation intensity. Combined application of Thymalin and Heparin in case of various diseases with dysimmunity and hypercoagulation resulted in positive therapy outcome. The analysis of literature and the data, obtained from the study on the Thymalin clinical effect, indicate the possibility of complex therapy with Thymalin and Heparin in patients with COVID-19, thus contributing to the decrease of pathological process severity and morbidity reduction.

Keywords: 
therapy
Thymalin
peptides
Heparin
immunity
hemostasis
«cytokine storm»
acute and chronic diseases
COVID-19



It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Belokrinitskaja T.E., Kuznik B.I. Novye podhody k terapii anemij gestatsionnogo perioda. Ros vestn perinatol i pediatr. 1993; 6: 11–3 [Belokrinitskaya T.E., Kuznik B.I. New approaches to the treatment of gestational anemia. Russian Bulletin of Perinatology and Pediatrics. 1993; 6: 11–3 (in Russ.)].
  2. Vitkovskij Ju.A., Kuznik B.I., Solpov A.V. Patogeneticheskoe znachenie limfotsitarno-trombotsitarnoj adgezii. Med immunol. 2006; 8 (5–6): 745–53 [Witkowski A. Yu., Kuznik B. I., Solov A.V. Pathogenetic significance of lymphocyte-platelet adhesion. Med immunol. 2006; 8 (5–6): 745–53 (in Russ.)].
  3. Kuznik B.I., Abdullaev H.R., Vitkovskij Ju.A. i dr. Sravnitel'noe dejstvie Timalina, epitalamina i vilona na sostojanie immuniteta u bol'nyh s oslozhnennym techeniem ostrogo appenditsita. Med immunol. 2008; 10 (4–5): 455–62 [Kuznik B.I., Abdullaev H.R., Vitkovsky Yu.A. et al. Comparative effect of thymalin, epithalamin and vilon on the state of immunity in patients with complicated acute appendicitis. Med immunol. 2008; 10 (4–5): 455–62 (in Russ.)].
  4. Kuznik B.I. Batozhargalova B.Ts., Vitkovskij Ju.A. Sostojanie immuniteta i limfotsitarno-trombotsitarnoj adgezii u detej s hronicheskim deformirujuschim bronhitom i bronhoektakticheskoj bolezn'ju. Med immunol. 2008; 10 (6): 583–8 [Kuznik, B.I. Batozhargalova B.Z., Vitkovsky Yu.A. The state of immunity and lymphocyte-platelet adhesion in children with chronic deforming bronchitis and bronchiectasis. Med immunol. 2008; 10 (6): 583–8 (in Russ.)].
  5. Kuznik B.I., Lihanov I.D., Budazhabon G.B. i dr. Vlijanie Timalina na immunitet i gemostaz u bol'nyh s abstsessom legkih. Tromboz, gemostaz i reologija. 2002; 3: 55–61 [Kuznik B.I., Likhanov I.D., Budazhabon G.B. et al. Influence of thimalin on immunity and hemostasis in patients with lung abscess. Thrombosis, hemostasis and rheology. 2002; 3: 55–61 (in Russ.)].
  6. Kuznik B.I., Lihanov I.D., Tsepelev V.L. i dr. Teoreticheskie i klinicheskie aspekty bioregulirujuschej terapii v hirurgii i travmatologii. Novosibirsk: Nauka, 2008; 312 s. [Kuznik B.I., Likhanov I.D., Tsepelev V.L. et al. Theoretical and clinical aspects of bioregulatory therapy in surgery and traumatology. Novosibirsk: Nauka, 2008; 312 (in Russ.)].
  7. Kuznik B.I., Morozov V.G., Havinson V.H. Tsitomediny. SPb: Nauka, 1998; 310 s. [Kuznik B.I., Morozov V.G., Khavinson V.Kh. Cytomediny. SPb: Nauka, 1998; 310 (in Russ.)].
  8. Kuznik B.I., Patejuk V.G Trombogemorragicheskij sindrom pri infektsionnyh zabolevanijah. Gematologija i transfuziologija. 1984; 29 (3): 39–48 [Kuznik B.I., Pateyuk V.G Thrombohemorrhagic syndrome in infectious diseases. Hematology and Transfusiology. 1984; 29 (3): 39–48 (in Russ.)].
  9. Kuznik B.I., Pinelis I.S., Havinson V.H. Primenenie peptidnyh bioreguljatorov v stomatologii. SPb: Eskulap, 1999; 142 s. [Kuznik B.I., Pinelis I.S., Khavinson V.Kh. The use of peptide bioregulators in dentistry. SPb: Eskulap, 1999; 142 (in Russ.)].
  10. Kuznik B.I., Tsybikov N.N., Vitkovskij Ju.A. Edinaja kletochno-gumoral'naja sistema zaschity organizma. Tromboz, gemostaz i reologija. 2005; 2: 3–16 [Kuznik B.I., Tsybikov N.N., Vitkovsky Yu.A. Unified cellular-humoral system of body protection. Thrombosis, hemostasis and rheology. 2005; 2: 3–16 (in Russ.)].
  11. Lihanov I.D., Kuznik B.I., Tsybikov M.N. Sostojanie immuniteta, svertyvaemosti i reologicheskih svojstv krovi pri gnojnoj hirurgicheskoj infektsii. Ros immunol zhurn. 2008; 2–3: 254–7 [Likhanov I.D., Kuznik B.I., Tsybikov M.N. The state of immunity, clotting and rheological properties of blood in purulent surgical infection. Russ Immunol J. 2008; 2–3: 254–57 (in Russ.)].
  12. Morozov V.G., Havinson V.H. Vydelenie iz kostnogo mozga, limfotsitov i timusa polipeptidov, regulirujuschih protsessy mezhkletochnoj kooperatsii v sisteme immuniteta. Dokl AN SSSR. 1981; 261 (1): 235–9 [Morozov V.G., Khavinson V.Kh. Isolation of polypeptides from the bone marrow, lymphocytes and thymus that regulate the processes of intercellular cooperation in the immune system. Docl SA USSR. 1981; 261 (1): 235–9 (in Russ.)].
  13. Morozov V.G., Havinson V.H., Malinin V.V. Peptidnye timomimetiki. SPb: Nauka, 2000; 158 s. [Morozov V.G., Khavinson V.Kh., Malinin V.V. Peptide thymomimetics. SPb: Nauka, 2000; 158 (in Russ.)].
  14. Patejuk V.G., Budazhabon G.B., Kuznik B.I. i dr. Timalin v lechenii bol'nyh rozhej. Klin med. 1987; 7: 110–3 [Pateiuk V.G., Badagaon G.B., Kuznik B.I. et al. Thimalin in the treatment of patients with erysipelas. Klin med. 1987; 7: 110–3 (in Russ.)].
  15. Sizonenko V.A., Varfolomeev A.R. Bioregulirujuschaja terapija pri termicheskoj travme. Chita: Poisk, 1999; 156 s. [Sizonenko V.A., Varfolomeev A.R. Bioregulatory therapy for thermal injury. Chita: Poisk, 1999; 156 (in Russ.)].
  16. Sizonenko V.A., Kuznik B.I., Budazhabon G.B. i dr. Primenenie Timalina v kompleksnom lechenii otmorozhenij. Vestnik hirurgii. 1984; 8: 86–90 [Sizonenko V.A., Kuznik B.I., Budajabon G.B. et al. The use of thymalin in the complex treatment of frostbite. Bulletin of Surgery. 1984; 8: 86–90 (in Russ.)].
  17. Havinson V.H. Lekarstvennye peptidnye preparaty: proshloe, nastojaschee, buduschee. Klin med. 2020; 98 (3): 165–77 [Khavinson V.Kh., Peptide drugs: past, present, future. Klin med. 2020; 98 (3): 165–77 (in Russ.)].
  18. Havinson V.H., Anisimov S.V., Malinin V.V. i dr. Peptidnaja reguljatsija genoma i starenie. M.: Izd-vo RAMN, 2005; 208 s. [Khavinson V.Kh., Anisimov S.V., Malinin V.V. et al. Peptide regulation of the genome and aging. M.: Izd-vo RAMN, 2005; 208 (in Russ.)].
  19. Havinson V.H., Kuznik B.I., Sturov V.G. i dr. Primenenie preparata Timalin® pri zabolevanijah organov dyhanija. Perspektivy ispol'zovanija pri COVID-19. RMZh. 2020; 9: 44–50 [Khavinson V.Kh., Kuznik B.I., Sturov V.G. et al. Thymalin use for respiratory diseases. Application potential in COVID-19. RMJ. 2020; 9: 44–50 (in Russ.)].
  20. Havinson V.H., Kuznik B.I., Ryzhak G.A. Peptidnye geroprotektory – epigeneticheskie reguljatory fiziologicheskih funktsij organizma. SPb: RGPU im. A.I. Gertsena, 2014; 271 s. [Khavinson V.Kh., Kuznik B.I., Ryzhak G.A. Peptide geroprotectors – epigenetic regulators of physiological functions. SPb: A.I. Herzen State Pedagogical University, 2014; 271 (in Russ.)].
  21. Havinson V.H., Morozov V.G. Immunomodulirujuschee dejstvie faktora timusa v patologii. Immunologija. 1981; 5: 28–31 [Khavinson V.Kh., Morozov V.G. Immunomodulating action of the thymus factor in pathology. Immunology. 1981; 5: 28–31 (in Russ.)].
  22. Tsybenova B.Ts., Kuznik B.I. Sostojanie immunnoj sistemy u detej s hronicheskimi vospalitel'nymi zabolevanijami legkih. Bjull VSNTs SO RAMN. 2004; 1–2: 281–5 [Tsybenova B.Ts, Kuznik B.I. The state of the immune system in children with chronic inflammatory lung diseases. Bull VCNZ SO RAMN. 2004; 1–2: 281–5 (in Russ.)].
  23. Scherbak V.A. Patogeneticheskoe obosnovanie primenenija peptidnyh bioreguljatorov u detej s hronicheskim gastroduodenitom. Bjull VSNTs SO RAMN. 2004; 3: 274–7 [Shcherbak V.A. Pathogenetic rationale for the use of peptide bioregulators in children with chronic gastroduodenitis. Bull VCNZ SO RAMN. 2004; 3: 274–7 (in Russ.)].
  24. Scherbak V.A., Vitkovskij Ju.A., Kuznik B.I. Immunnye narushenija i obosnovanie ih korrektsii pri hronicheskom gastroduodenite u detej. Med immunol. 2008; 10 (1): 59–66 [Shcherbak V.A., Vitkovsky Yu.A., Kuznik B.I. Immune disorders and the rationale for their correction in chronic gastroduodenitis in children. Med immunol. 2008; 10 (1): 59–66 (in Russ.)].
  25. Scherbak V.A., Kuznik B.I., Vitkovskij Ju.A. Tsitokiny pri immunomodulirujuschej terapii detej s hronicheskim gastroduodenitom. Immunologija. 2005; 26 (6): 342–4 [Shcherbak V.A., Kuznik B.I., Vitkovsky Yu.A. Cytokines in immunomodulating therapy of children with chronic gastroduodenitis. Immunology. 2005; 26 (6): 342–4 (in Russ.)].
  26. Cascella M., Rajnik M., Cuomo A. et al. Features, Evaluation and Treatment Coronavirus (COVID-19). 2020 Apr 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan. PMID: 32150360.
  27. Dong Y., Mo X., Hu Y. et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics. 2020; 145 (6): e20200702. DOI: 10.1542/peds.2020-0702
  28. Gao Y., Li T., Han M. et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020; 92 (27): 791–6. DOI:10.1002/jmv.25770
  29. Guzik T.J., Mohiddin S.A., Dimarco A. et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020; 30: cvaa106. DOI: 10.1093/cvr/cvaa106
  30. Henry B.M., Vikse J., Benoit S. et al. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta. 2020; 507: 167–73. DOI: 10.1016/j.cca.2020.04.027
  31. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 497–506. DOI: 10.1016/S0140-6736(20)30183-5
  32. Khavinson V.Kh., Malinin V.V. Gerontological Aspects of Genome Peptide Regulation. Basel (Switzerland): Karger AG, 2005; 104 p.
  33. Kolchina N., Khavinson V., Linkova N. et al. Systematic Search for Structural Motifs of Peptide Binding to Double-Stranded DNA. Nucleic Acids Res. 2019; 47 (20): 10553–63. DOI: 10.1093/nar/gkz850
  34. Li G., Fan Y., Lai Y. et al. Coronavirus infections and immune responses. J Med Virol. 2020; 92 (4): 424–32. doi: 10.1002/jmv.25685
  35. Lu C.C., Chen M.Y., Lee W.S. et al. Potential therapeutic agents against COVID-19: What we know so far. J Chin Med Assoc. 2020; 83 (6): 534–6. DOI: 10.1097/JCMA.0000000000000318
  36. Luo P., Liu Y., Qiu L. et al. Ocilizumab treatment in COVID-19: A single center experience. J Med Virol. 2020; 92 (7): 814–8. DOI: 10.1002/jmv.25801
  37. Mao L., Wang M.D., Chen S.H. et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. MedRxiv. 2020. DOI: 10.1101/2020.02.22.20026500
  38. Mehta P., McAuley D.F., Brown M. et al. COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. Lancet. 2020; 395 (10229): 1033–4. DOI: 10.1016/S0140-6736(20)30628-0
  39. Prompetchara E., Ketloy C., Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020; 38 (1): 1–9. DOI: 10.12932/AP-200220-0772
  40. Ritchie A.I., Singanayagam A. Immunosuppression for Hyperinflammation in COVID-19: A Double-Edged Sword? Lancet. 2020; 395 (10230): 1111. DOI: 10.1016/S0140-6736(20)30691-7
  41. Schmulson M., Dávalos M.F., Berumen J. Beware: Gastrointestinal symptoms can be a manifestation of COVID-19. Rev Gastroenterol Mex. 2020; S0375-0906(20)30044-6. DOI: 0.1016/j.rgmx.2020.04.001
  42. Shenkman B., Brill I., Solpov A. et al. CD4+ Lymphocytes Require Platelets for Adhesion to Immobilized Fibronectin in Flow: Role of beta(1) (CD29)-, beta(2) (CD18)-related Integrins and Non-Integrin Receptors. Cell Immunol. 2006; 242 (1): 52–9. DOI: 10.1016/j.cellimm.2006.09.005
  43. Siddiqi H.K., Mehra M.R. COVID-19 illness in native and immunosuppressed states: a clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020; 39 (5): 405–7. DOI: 10.1016/j.healun.2020.03.012
  44. Tang N., Bai H., Chen X. et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020; 18 (5): 1094–9. DOI: 10.1111/jth.14817
  45. Tang N., Li D., Wang X. et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18 (4): 844–7. DOI: 10.1111/jth.14768
  46. Wang Q., Zhao Y., Chen X. et al. Virtual Screening of Approved Clinic Drugs with Main Protease (3CLpro) Reveals Potential Inhibitory Effects on SARS-CoV-2. Preprints. 2020; 2020030144.
  47. Zhang C., Wu Z., Li J.W. et al. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020; 55 (5): 105954. DOI: 10.1016/j.ijantimicag.2020.105954