HAC (Russian)
RSCI (Russian)
EBSCO
DOI (USA)
Ulrichsweb (Ulrich’s Periodicals Directory)
Scientific Indexing Services

SYSTEM FOR ISOLATION OF ADIPOSE-DERIVED STROMAL VASCULAR FRACTION ESTIMATION

Download full text PDF
Issue: 
1
Year: 
2017

А. Veremeev (1), Candidate of Medical Sciences; N. Katz (1), Candidate of Medical Sciences; R. Bolgarin (1); M. Petkova (1); I. Kornienko (2); A. Melerzanov (2), Candidate of Medical Sciences; N. Manturova (3), MD; Professor V. Nesterenko (4), MD 1-JoinTechCell LLC, Moscow 2-Moscow Institute of Physics and Technology (State University), Dolgoprudny 3-Pirogov Russian National Research Medical University, Moscow 4-Gamaleya Research Institute of Epidemiology and Microbiology, Moscow

There are a number of approaches to the isolation of adipose-derived stromal vascular fraction (SVF) for the applications in regenerative medicine. Despite all advantages, existing approaches are expensive and therefore hardly available for the clinical use. Here we present a new automated system for the isolation of adipose-derived SVF which combines an acceptable quality with high speed and acceptable cost. We describe the requirements for liposuction, infiltration anesthesia, and preservation of lipoaspirate, an original protocol of SVF isolation, and a quality control experiment. According to the flow cytometry data, SVF isolated by system contained 66,000 cells (≥98% alive, ≥92% nuclear) per 100 μL. The proportion of lymphocytes/monocytes and target cell fraction amongst the nuclear cells was 91.8% and 7.5%, respectively. The proportion of adipose-derived stem cells in SVF was ≥0.5%. Therefore, system is efficient for the rapid isolation of adipose-derived SVF.

Keywords: 
surgery
plastic surgery
orthopedics
cosmetology
stromal vascular fraction
adipose tissue
regeneration
cell therapy
automated isolation system



It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Johal K., Lees V., Reid A. Adipose-derived stem cells: selecting for translational success // Regen. Med. – 2015; 10 (1): 79–96.
  2. Minteer D., Marra K., Rubin J. Adipose stem cells: biology, safety, regulation, and regenerative potential // Clin. Plast. Surg. – 2015; 42 (2): 169–79.
  3. Lim M., Ong W., Sugii S. The current landscape of adipose-derived stem cells in clinical applications // Expert Rev. Mol. Med. – 2014; 16: e8.
  4. Uzbas F., May I., Parisi A. et al. Molecular physiognomies and applications of adipose-derived stem cells // Stem. Cell. Rev. – 2015; 11 (2): 298–308.
  5. De Francesco F., Ricci G., D'Andrea F. et al. Human adipose stem cells: from bench to bedside // Tissue Eng. Part B Rev. – 2015; 21 (6): 572–84.
  6. Mizuno H., Tobita M., Uysal A. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine // Stem. Cells. – 2012; 30 (5): 804–10.
  7. Huang S., Fu R., Shyu W. et al. Adipose-derived stem cells: isolation, characterization, and differentiation potential // Cell. Transplant. – 2013; 22 (4): 701–9.
  8. Gentile P., Orlandi A., Scioli M. et al. Concise review: adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery // Stem. Cells Transl. Med. – 2012; 1 (3): 230–6.
  9. Liao H., Chen C. Osteogenic potential: Comparison between bone marrow and adipose-derived mesenchymal stem cells // World J. Stem Cells. – 2014; 6 (3): 288–95.
  10. Zuk P., Zhu M., Mizuno H. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies // Tissue Eng. – 2001; 7 (2): 211–28.
  11. Morris M., Beare J., Reed R. et al. Systemically delivered adipose stromal vascular fraction cells disseminate to peripheral artery walls and reduce vasomotor tone through a CD11b+-cell-dependent mechanism // Stem Cells Transl. Med. – 2015; 4 (4): 369–80.
  12. Granel B., Daumas A., Jouve E. et al. Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis: an open-label phase I trial // Ann. Rheum. Dis. – 2015; 74 (12): 2175–82.
  13. Atalay S., Coruh A., Deniz K. Stromal vascular fraction improves deep partial thickness burn wound healing // Burns. – 2014; 40 (7): 1375–83.
  14. Rodriguez J., Boucher F., Lequeux C. et al. Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice // Stem Cell Res. Ther. – 2015; 6: 241.
  15. Gotoh M., Yamamoto T., Kato M. et al. Regenerative treatment of male stress urinary incontinence by periurethral injection of autologous adipose-derived regenerative cells: 1-year outcomes in 11 patients // Int. J. Urol. – 2014; 21 (3): 294–300.
  16. Kim I., Bang S., Lee S. et al. Clinical implication of allogenic implantation of adipogenic differentiated adipose-derived stem cells // Stem Cells Transl. Med. – 2014; 3 (11): 1312–21.
  17. Gir P., Oni G., Brown S. et al. Human adipose stem cells: current clinical applications // Plast. Reconstr. Surg. – 2012; 129 (6): 1277–90.
  18. Oberbauer E., Steffenhagen C., Wurzer C. et al. Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art // Cell Regen. (Lond.). – 2015; 4: 7.
  19. Aronowitz J., Ellenhorn J. Adipose stromal vascular fraction isolation: a head-to-head comparison of four commercial cell separation systems // Plast. Reconstr. Surg. – 2013; 132 (6): 932–9.
  20. Doi K., Tanaka S., Iida H. et al. Stromal vascular fraction isolated from lipo-aspirates using an automated processing system: bench and bed analysis // J. Tissue Eng. Regen. Med. – 2013; 7 (11): 864–70.
  21. Güven S., Karagianni M., Schwalbe M. et al. Validation of an automated procedure to isolate human adipose tissue-derived cells by using the Sepax® technology // Tissue Eng. Part C Methods. – 2012; 18 (8): 575–82.
  22. Fraser J., Hicok K., Shanahan R. et al. The Celution® System: Automated Processing of Adipose-Derived Regenerative Cells in a Functionally Closed System // Adv. Wound Care (New Rochelle). – 2014; 3 (1): 38–45.
  23. Sundar-Raj S., Deshmukh A., Priya N. et al. Development of a System and Method for Automated Isolation of Stromal Vascular Fraction from Adipose Tissue Lipoaspirate // Stem Cells Int. – 2015; 2015: 109353.
  24. Cleveland E., Albano N., Hazen A. Roll, Spin, Wash, or Filter? Processing of Lipoaspirate for Autologous Fat Grafting: An Updated, Evidence-Based Review of the Literature // Plast. Reconstr. Surg. – 2015; 136 (4): 706–13.
  25. Torio-Padron N., Huotari A., Eisenhardt S. et al. Comparison of pre-adipocyte yield, growth and differentiation characteristics from excised versusaspirated adipose tissue // Cells Tissues Organs. – 2010; 191 (5): 365–71.
  26. Park H., Williams R., Goldman N. et al. Comparison of effects of 2 harvesting methods on fat autograft // Laryngoscope. – 2008; 118 (8): 1493–9.
  27. von Heimburg D., Hemmrich K., Haydarlioglu S. et al. Comparison of viable cell yield from excised versus aspirated adipose tissue // Cells Tissues Organs. – 2004; 178 (2): 87–92.
  28. Sterodimas A., Boriani F., Magarakis E. et al. Thirtyfour years of liposuction: past, present and future // Eur. Rev. Med. Pharmacol. Sci. – 2012; 16 (3): 393–406.
  29. Lozinski A., Huq N. Tumescent liposuction // Clin. Plast. Surg. – 2013; 40 (4): 593–613.
  30. Oedayrajsingh-Varma M., van Ham S., Knippenberg M. et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure // Cytotherapy. – 2006; 8 (2): 166–77.
  31. Chung M., Zimmermann A., Paik K. et al. Isolation of human adipose-derived stromal cells using laser-assisted liposuction and their therapeutic potential in regenerative medicine // Stem Cells Transl. Med. – 2013; 2 (10): 808–17.
  32. Mojallal A., Auxenfans C., Lequeux C. et al. Influence of negative pressure when harvesting adipose tissue on cell yield of the stromal-vascular fraction // Biomed. Mater. Eng. – 2008; 18 (4–5): 193–7.
  33. Muscari C., Bonafè F., Fiumana E. et al. Comparison between stem cells harvested from wet and dry lipoaspirates // Connect. Tissue Res. – 2013; 54 (1): 34–40.
  34. Iyyanki T., Hubenak J., Liu J. et al. Harvesting technique affects adipose-derived stem cell yield // Aesthet. Surg. J. – 2015; 35 (4): 467–76.
  35. Fraser J., Wulur I., Alfonso Z. et al. Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots // Cytotherapy. – 2007; 9 (5): 459–67.
  36. Faustini M., Bucco M., Chlapanidas T. et al. Nonexpanded mesenchymal stem cells for regenerative medicine: yield in stromal vascular fraction from adipose tissues // Tissue Eng. Part C Methods. – 2010; 16 (6): 1515–21.
  37. Matsumoto D., Shigeura T., Sato K. et al. Influences of preservation at various temperatures on liposuction aspirates // Plast. Reconstr. Surg. – 2007; 120 (6): 1510–7.
  38. Veremeev A.V., Bolgarin R.N., Kats N.G. i dr. Stromal'no-vaskuljarnaja fraktsija zhirovoj tkani kak al'ternativnyj istochnik kletochnogo materiala dlja regenerativnoj meditsiny // Geny i kletki. – 2016; XI (1): 35–42.
  39. Melerzanov A.V., Manturova N.E. i dr. Liposaktsija i kletochnaja terapija // Vrach. – 2014; 4: 12–4.
  40. Melerzanov A.V., Manturova N.E. Minimal'no manipuliruemyj kletochnyj produkt v plasticheskoj hirurgii i regenerativnoj meditsine // Vrach. – 2015; 8: 78–80.