ПОЛУАВТОМАТИЧЕСКАЯ СИСТЕМА ДЛЯ ВЫДЕЛЕНИЯ СТРОМАЛЬНО-ВАСКУЛЯРНОЙ ФРАКЦИИ ЖИРОВОЙ ТКАНИ

Скачать статью в PDF
Номер журнала: 
1
Год издания: 
2017

А. Веремеев (1), кандидат медицинских наук, Н. Кац (1), кандидат медицинских наук, Р. Болгарин (1), М. Петкова (1), И. Корниенко (2), А. Мелерзанов (2), кандидат медицинских наук, Н. Мантурова (3), доктор медицинских наук, В. Нестеренко (4), доктор медицинских наук, профессор 1-ООО «ДжоинТекСэлл», Москва 2-Московский физико-технический институт (государственный университет), Долгопрудный 3-Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, Москва 4-ФНИЦ эпидемиологии и микробиологии им. Н.Ф. Гамалеи, Москва E-mail: al.veremeev@gmail.com

Представлена новая автоматизированная система выделения стромально-васкулярной фракции (СВФ) жировой ткани, сочетающая требуемое качество с высокой скоростью работы и доступной стоимостью. Описаны необходимые условия выполнения процедуры липосакции и инфильтрационной анестезии, а также хранения липоаспирата, представлены оригинальный протокол выделения СВФ и производственный эксперимент по контролю качества.

Ключевые слова: 
хирургия
пластическая хирургия
ортопедия
косметология
стромально-васкулярная фракция
жировая ткань
регенерация
клеточная терапия
автоматизированная система выделения

Для цитирования
Веремеев А., Кац Н., Болгарин Р., Петкова М., Корниенко И., Мелерзанов А., Мантурова Н., Нестеренко В. ПОЛУАВТОМАТИЧЕСКАЯ СИСТЕМА ДЛЯ ВЫДЕЛЕНИЯ СТРОМАЛЬНО-ВАСКУЛЯРНОЙ ФРАКЦИИ ЖИРОВОЙ ТКАНИ . Врач, 2017; (1): 68-72


It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

Список литературы: 
  1. Johal K., Lees V., Reid A. Adipose-derived stem cells: selecting for translational success // Regen. Med. – 2015; 10 (1): 79–96.
  2. Minteer D., Marra K., Rubin J. Adipose stem cells: biology, safety, regulation, and regenerative potential // Clin. Plast. Surg. – 2015; 42 (2): 169–79.
  3. Lim M., Ong W., Sugii S. The current landscape of adipose-derived stem cells in clinical applications // Expert Rev. Mol. Med. – 2014; 16: e8.
  4. Uzbas F., May I., Parisi A. et al. Molecular physiognomies and applications of adipose-derived stem cells // Stem. Cell. Rev. – 2015; 11 (2): 298–308.
  5. De Francesco F., Ricci G., D'Andrea F. et al. Human adipose stem cells: from bench to bedside // Tissue Eng. Part B Rev. – 2015; 21 (6): 572–84.
  6. Mizuno H., Tobita M., Uysal A. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine // Stem. Cells. – 2012; 30 (5): 804–10.
  7. Huang S., Fu R., Shyu W. et al. Adipose-derived stem cells: isolation, characterization, and differentiation potential // Cell. Transplant. – 2013; 22 (4): 701–9.
  8. Gentile P., Orlandi A., Scioli M. et al. Concise review: adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery // Stem. Cells Transl. Med. – 2012; 1 (3): 230–6.
  9. Liao H., Chen C. Osteogenic potential: Comparison between bone marrow and adipose-derived mesenchymal stem cells // World J. Stem Cells. – 2014; 6 (3): 288–95.
  10. Zuk P., Zhu M., Mizuno H. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies // Tissue Eng. – 2001; 7 (2): 211–28.
  11. Morris M., Beare J., Reed R. et al. Systemically delivered adipose stromal vascular fraction cells disseminate to peripheral artery walls and reduce vasomotor tone through a CD11b+-cell-dependent mechanism // Stem Cells Transl. Med. – 2015; 4 (4): 369–80.
  12. Granel B., Daumas A., Jouve E. et al. Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis: an open-label phase I trial // Ann. Rheum. Dis. – 2015; 74 (12): 2175–82.
  13. Atalay S., Coruh A., Deniz K. Stromal vascular fraction improves deep partial thickness burn wound healing // Burns. – 2014; 40 (7): 1375–83.
  14. Rodriguez J., Boucher F., Lequeux C. et al. Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice // Stem Cell Res. Ther. – 2015; 6: 241.
  15. Gotoh M., Yamamoto T., Kato M. et al. Regenerative treatment of male stress urinary incontinence by periurethral injection of autologous adipose-derived regenerative cells: 1-year outcomes in 11 patients // Int. J. Urol. – 2014; 21 (3): 294–300.
  16. Kim I., Bang S., Lee S. et al. Clinical implication of allogenic implantation of adipogenic differentiated adipose-derived stem cells // Stem Cells Transl. Med. – 2014; 3 (11): 1312–21.
  17. Gir P., Oni G., Brown S. et al. Human adipose stem cells: current clinical applications // Plast. Reconstr. Surg. – 2012; 129 (6): 1277–90.
  18. Oberbauer E., Steffenhagen C., Wurzer C. et al. Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art // Cell Regen. (Lond.). – 2015; 4: 7.
  19. Aronowitz J., Ellenhorn J. Adipose stromal vascular fraction isolation: a head-to-head comparison of four commercial cell separation systems // Plast. Reconstr. Surg. – 2013; 132 (6): 932–9.
  20. Doi K., Tanaka S., Iida H. et al. Stromal vascular fraction isolated from lipo-aspirates using an automated processing system: bench and bed analysis // J. Tissue Eng. Regen. Med. – 2013; 7 (11): 864–70.
  21. Güven S., Karagianni M., Schwalbe M. et al. Validation of an automated procedure to isolate human adipose tissue-derived cells by using the Sepax® technology // Tissue Eng. Part C Methods. – 2012; 18 (8): 575–82.
  22. Fraser J., Hicok K., Shanahan R. et al. The Celution® System: Automated Processing of Adipose-Derived Regenerative Cells in a Functionally Closed System // Adv. Wound Care (New Rochelle). – 2014; 3 (1): 38–45.
  23. Sundar-Raj S., Deshmukh A., Priya N. et al. Development of a System and Method for Automated Isolation of Stromal Vascular Fraction from Adipose Tissue Lipoaspirate // Stem Cells Int. – 2015; 2015: 109353.
  24. Cleveland E., Albano N., Hazen A. Roll, Spin, Wash, or Filter? Processing of Lipoaspirate for Autologous Fat Grafting: An Updated, Evidence-Based Review of the Literature // Plast. Reconstr. Surg. – 2015; 136 (4): 706–13.
  25. Torio-Padron N., Huotari A., Eisenhardt S. et al. Comparison of pre-adipocyte yield, growth and differentiation characteristics from excised versusaspirated adipose tissue // Cells Tissues Organs. – 2010; 191 (5): 365–71.
  26. Park H., Williams R., Goldman N. et al. Comparison of effects of 2 harvesting methods on fat autograft // Laryngoscope. – 2008; 118 (8): 1493–9.
  27. von Heimburg D., Hemmrich K., Haydarlioglu S. et al. Comparison of viable cell yield from excised versus aspirated adipose tissue // Cells Tissues Organs. – 2004; 178 (2): 87–92.
  28. Sterodimas A., Boriani F., Magarakis E. et al. Thirtyfour years of liposuction: past, present and future // Eur. Rev. Med. Pharmacol. Sci. – 2012; 16 (3): 393–406.
  29. Lozinski A., Huq N. Tumescent liposuction // Clin. Plast. Surg. – 2013; 40 (4): 593–613.
  30. Oedayrajsingh-Varma M., van Ham S., Knippenberg M. et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure // Cytotherapy. – 2006; 8 (2): 166–77.
  31. Chung M., Zimmermann A., Paik K. et al. Isolation of human adipose-derived stromal cells using laser-assisted liposuction and their therapeutic potential in regenerative medicine // Stem Cells Transl. Med. – 2013; 2 (10): 808–17.
  32. Mojallal A., Auxenfans C., Lequeux C. et al. Influence of negative pressure when harvesting adipose tissue on cell yield of the stromal-vascular fraction // Biomed. Mater. Eng. – 2008; 18 (4–5): 193–7.
  33. Muscari C., Bonafè F., Fiumana E. et al. Comparison between stem cells harvested from wet and dry lipoaspirates // Connect. Tissue Res. – 2013; 54 (1): 34–40.
  34. Iyyanki T., Hubenak J., Liu J. et al. Harvesting technique affects adipose-derived stem cell yield // Aesthet. Surg. J. – 2015; 35 (4): 467–76.
  35. Fraser J., Wulur I., Alfonso Z. et al. Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots // Cytotherapy. – 2007; 9 (5): 459–67.
  36. Faustini M., Bucco M., Chlapanidas T. et al. Nonexpanded mesenchymal stem cells for regenerative medicine: yield in stromal vascular fraction from adipose tissues // Tissue Eng. Part C Methods. – 2010; 16 (6): 1515–21.
  37. Matsumoto D., Shigeura T., Sato K. et al. Influences of preservation at various temperatures on liposuction aspirates // Plast. Reconstr. Surg. – 2007; 120 (6): 1510–7.
  38. Веремеев А.В., Болгарин Р.Н., Кац Н.Г. и др. Стромально-васкулярная фракция жировой ткани как альтернативный источник клеточного материала для регенеративной медицины // Гены и клетки. – 2016; XI (1): 35–42.
  39. Мелерзанов А.В., Мантурова Н.Е. и др. Липосакция и клеточная терапия // Врач. – 2014; 4: 12–4.
  40. Мелерзанов А.В., Мантурова Н.Е. Минимально манипулируемый клеточный продукт в пластической хирургии и регенеративной медицине // Врач. – 2015; 8: 78–80.