ВАК (Россия)
РИНЦ (Россия)
EBSCO
Регистрационное агентство DOI (США)
Ulrichsweb (Ulrich’s Periodicals Directory)
Scientific Indexing Services

БиоЧага – сублимированный экстракт березового гриба чага, произведенный по уникальной авторской технологии, с доказанным противоопухолевым и иммуномодулирующим действием

DOI: https://doi.org/10.29296/25877305-2022-03-14
Номер журнала: 
3
Год издания: 
2022

Д.В. Дедов, доктор медицинских наук, профессор Тверской государственный медицинский университет
E-mail: dedov_d@inbox.ru

Представлен аналитический обзор 27 научных публикаций ученых из Китайской Народной Республики, Российской Федерации, Индии, Южно-Африканской Республики, Саудовской Аравии, Арабской Республики Египет, Португалии, Израиля, Украины, Австрии, Германии, Республики Корея, Малайзии, Ирака, Республики Польша, Турции, Сербии. Авторы приводят результаты исследований чаги, а также особенности физико-химического состава сублимированного экстракта чаги БиоЧаги, произведенного по уникальной авторской технологии. Указано, что в БиоЧаге сохраняется высокая концентрация биологически активных веществ. Отражены данные о применении БиоЧаги в онкологии. Заключили, что экстракт БиоЧаги действует многофункционально. В исследованиях отмечено его противоопухолевое, иммуномодулирующее, детоксикационное, противовоспалительное действие.

Ключевые слова: 
терапия
экстракт чаги
БиоЧага
противоопухолевое
иммуномодулируещее
детоксикационное действие
технология производства
Inonotus obliquus

Для цитирования
Д.В. Дедов БиоЧага – сублимированный экстракт березового гриба чага, произведенный по уникальной авторской технологии, с доказанным противоопухолевым и иммуномодулирующим действием . Врач, 2022; (3): 78-81 https://doi.org/10.29296/25877305-2022-03-14


Список литературы: 
  1. Змитрович И.В., Денисова Н.П., Баландайкин М.Э. и др. Чага и ее биоактивные комплексы: история и перспективы. Формулы Фармации. 2020; 2 (2): 84–93. DOI: 10.17816/phf34803
  2. Синкина Т. Биодигидрокверцетин (БДК) и Биочага (БЧ) как сопроводительная терапия при химиотерапевтическом и послеоперационном курсе дистанционной лучевой терапии рака молочной железы. Медицина: целевые проекты. 2020; 36: 28–30.
  3. Ганов Д.И. Использование качественных природных БАДов в качестве сопроводительной терапии при радикальном лучевом лечении и химиотерапии онкоурологических пациентов. Врач. 2021; 32 (11): 76–9. DOI: 10.29296/25877305-2021-11-16
  4. Duru K.C., Kovaleva E.G., Danilova I.G. et al. The pharmacological potential and possible molecular mechanisms of action of Inonotus obliquus from preclinical studies. Phytother Res. 2019; 33 (8): 1966–80. DOI: 10.1002/ptr.6384
  5. Eid J.I., Das B., Al-Tuwaijri M.M. et al. Targeting SARS-CoV-2 with Chaga mushroom: An in silico study toward developing a natural antiviral compound. Food Sci Nutr. 2021; 9 (12): 6513–23. DOI: 10.1002/fsn3.2576
  6. Zhao Y., Zheng W. Deciphering the antitumoral potential of the bioactive metabolites from medicinal mushroom Inonotus obliquus. J Ethnopharmacol. 2021; 265: 113321. DOI: 10.1016/j.jep.2020.113321
  7. Sousa J.L.C., Freire C.S.R., Silvestre A.J.D. et al. Recent Developments in the Functionalization of Betulinic Acid and Its Natural Analogues: A Route to New Bioactive Compounds. Molecules. 2019; 24 (2): 355. DOI: 10.3390/molecules24020355
  8. Zmitrovich I.V., Belova N.V., Balandaykin M.E. et al. Cancer without Pharmacological Illusions and a Niche for Mycotherapy (Review). Int J Med Mushrooms. 2019; 21 (2): 105–19. DOI: 10.1615/IntJMedMushrooms.2019030047
  9. Jöhrer K., Ҫiҫek S.S. Multiple Myeloma Inhibitory Activity of Plant Natural Products. Cancers (Basel). 2021; 13 (11): 2678. DOI: 10.3390/cancers13112678
  10. Zhao F., Mai Q., Ma J. et al. Triterpenoids from Inonotus obliquus and their antitumor activities. Fitoterapia. 2015; 101: 34–40. DOI: 10.1016/j.fitote.2014.12.005
  11. Kim Y.R. Immunomodulatory Activity of the Water Extract from Medicinal Mushroom Inonotus obliquus. Mycobiology. 2005; 33 (3): 158–62. DOI: 10.4489/MYCO.2005.33.3.158
  12. Szychowski K.A., Skóra B., Pomianek T. et al. Inonotus obliquus – from folk medicine to clinical use. J Tradit Complement Med. 2020; 11 (4): 293–302. DOI: 10.1016/j.jtcme.2020.08.003
  13. Baek J., Roh H.S., Baek K.H. et al. Bioactivity-based analysis and chemical characterization of cytotoxic constituents from Chaga mushroom (Inonotus obliquus) that induce apoptosis in human lung adenocarcinoma cells. J Ethnopharmacol. 2018; 224: 63–75. DOI: 10.1016/j.jep.2018.05.025
  14. Kumar P., Bhadauria A.S., Singh A.K. et al. Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications. Life Sci. 2018; 209: 24–33. DOI: 10.1016/j.lfs.2018.07.056
  15. Wang X., Lu X., Zhu R. et al. Betulinic Acid Induces Apoptosis in Differentiated PC12 Cells Via ROS-Mediated Mitochondrial Pathway. Neurochem Res. 2017; 42 (4): 1130–40. DOI: 10.1007/s11064-016-2147-y
  16. Lu Y., Jia Y., Xue Z. et al. Recent Developments in Inonotus obliquus (Chaga mushroom) Polysaccharides: Isolation, Structural Characteristics, Biological Activities and Application. Polymers (Basel). 2021; 13 (9): 1441. DOI: 10.3390/polym13091441
  17. Nguyen T.M.N., Le H.S., Le B.V. et al. Anti-allergic effect of inotodiol, a lanostane triterpenoid from Chaga mushroom, via selective inhibition of mast cell function. Int Immunopharmacol. 2020; 81: 106244. DOI: 10.1016/j.intimp.2020.106244
  18. Maza P.A.M.A., Lee J.H., Kim Y.S. et al. Inotodiol From Inonotus obliquus Chaga Mushroom Induces Atypical Maturation in Dendritic Cells. Front Immunol. 2021; 12: 650841. DOI: 10.3389/fimmu.2021.650841
  19. Kou R.W., Han R., Gao Y.Q. et al. Anti-neuroinflammatory polyoxygenated lanostanoids from Chaga mushroom Inonotus obliquus. Phytochemistry. 2021; 184: 112647. DOI: 10.1016/j.phytochem.2020.112647
  20. Ali-Seyed M., Jantan I., Vijayaraghavan K. et al. Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy. Chem Biol Drug Des. 2016; 87 (4): 517–36. DOI: 10.1111/cbdd.12682
  21. Spivak A.Y., Nedopekina D.A., Gubaidullin R.R. et al. Conjugation of Natural Triterpenic Acids with Delocalized Lipophilic Cations: Selective Targeting Cancer Cell Mitochondria. J Pers Med. 2021; 11 (6): 470. DOI: 10.3390/jpm11060470
  22. Alzand K.I., Ünal S., Boufaris M.S.M. Lanostane-Type Triterpenes and Abietane-Type Diterpene from the Sclerotia of Chaga Medicinal Mushroom, Inonotus obliquus (Agaricomycetes), and Their Biological Activities. Int J Med Mushrooms. 2018; 20 (6): 507–16. DOI: 10.1615/IntJMedMushrooms.2018026007
  23. Nikitina S.A., Khabibrakhmanova V.R., Sysoeva M.A. Composition and biological activity of triterpenes and steroids from Inonotus obliquus (chaga). Biomed Khim. 2016; 62 (4): 369–75. DOI: 10.18097/PBMC20166204369
  24. Zou C.X., Dong S.H., Hou Z.L. et al. Modified lanostane-type triterpenoids with neuroprotective effects from the fungus Inonotus obliquus. Bioorg Chem. 2020; 105: 104438. DOI: 10.1016/j.bioorg.2020.104438
  25. Wei Y.M., Yang L., Mei W.L. et al. Phenolic compounds from the sclerotia of Inonotus obliquus. Nat Prod Res. 2020: 1–5. DOI: 10.1080/14786419.2020.1833202
  26. Zou C.X., Zhang Y.Y., Bai M. et al. Aromatic compounds from the sclerotia of Inonotus obliquus. Nat Prod Res. 2021; 35 (14): 2454–7. DOI: 10.1080/14786419.2019.1677656
  27. Živković L., Bajić V., Topalović D. et al. Antigenotoxic Effects of Biochaga and Dihydroquercetin (Taxifolin) on H2O2-Induced DNA Damage in Human Whole Blood Cells. Oxid Med Cell Longev. 2019; 2019: 5039372. DOI: 10.1155/2019/5039372
  28. Zmitrovich I.V., Denisova N.P., Balandaykin M.E. et al. Chaga and its bioactive complexes: history and perspectives. Pharmacy Formulas. 2020; 2 (2): 84–93 (in Russ.). DOI: 10.17816/phf34803
  29. Sinkina T. Biodigidrokvertsetin (BDK) i Biochaga (BCh) kak soprovoditel’naya terapiya pri khimioterapevticheskom i posleoperatsionnom kurse distantsionnoi luchevoi terapii raka molochnoi zhelezy. Meditsina: tselevye proekty. 2020; 36: 28–30
  30. Ganov D. Use of high-quality natural dietary supplements as accompanying therapy in patients during radical radiotherapy and chemotherapy for urological cancer. Vrach. 2021; 32 (11): 76–9. DOI: 10.29296/25877305-2021-11-16
  31. Duru K.C., Kovaleva E.G., Danilova I.G. et al. The pharmacological potential and possible molecular mechanisms of action of Inonotus obliquus from preclinical studies. Phytother Res. 2019; 33 (8): 1966–80. DOI: 10.1002/ptr.6384
  32. Eid J.I., Das B., Al-Tuwaijri M.M. et al. Targeting SARS-CoV-2 with Chaga mushroom: An in silico study toward developing a natural antiviral compound. Food Sci Nutr. 2021; 9 (12): 6513–23. DOI: 10.1002/fsn3.2576
  33. Zhao Y., Zheng W. Deciphering the antitumoral potential of the bioactive metabolites from medicinal mushroom Inonotus obliquus. J Ethnopharmacol. 2021; 265: 113321. DOI: 10.1016/j.jep.2020.113321
  34. Sousa J.L.C., Freire C.S.R., Silvestre A.J.D. et al. Recent Developments in the Functionalization of Betulinic Acid and Its Natural Analogues: A Route to New Bioactive Compounds. Molecules. 2019; 24 (2): 355. DOI: 10.3390/molecules24020355
  35. Zmitrovich I.V., Belova N.V., Balandaykin M.E. et al. Cancer without Pharmacological Illusions and a Niche for Mycotherapy (Review). Int J Med Mushrooms. 2019; 21 (2): 105–19. DOI: 10.1615/IntJMedMushrooms.2019030047
  36. Jöhrer K., Ҫiҫek S.S. Multiple Myeloma Inhibitory Activity of Plant Natural Products. Cancers (Basel). 2021; 13 (11): 2678. DOI: 10.3390/cancers13112678
  37. Zhao F., Mai Q., Ma J. et al. Triterpenoids from Inonotus obliquus and their antitumor activities. Fitoterapia. 2015; 101: 34–40. DOI: 10.1016/j.fitote.2014.12.005
  38. Kim Y.R. Immunomodulatory Activity of the Water Extract from Medicinal Mushroom Inonotus obliquus. Mycobiology. 2005; 33 (3): 158–62. DOI: 10.4489/MYCO.2005.33.3.158
  39. Szychowski K.A., Skóra B., Pomianek T. et al. Inonotus obliquus – from folk medicine to clinical use. J Tradit Complement Med. 2020; 11 (4): 293–302. DOI: 10.1016/j.jtcme.2020.08.003
  40. Baek J., Roh H.S., Baek K.H. et al. Bioactivity-based analysis and chemical characterization of cytotoxic constituents from Chaga mushroom (Inonotus obliquus) that induce apoptosis in human lung adenocarcinoma cells. J Ethnopharmacol. 2018; 224: 63–75. DOI: 10.1016/j.jep.2018.05.025
  41. Kumar P., Bhadauria A.S., Singh A.K. et al. Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications. Life Sci. 2018; 209: 24–33. DOI: 10.1016/j.lfs.2018.07.056
  42. Wang X., Lu X., Zhu R. et al. Betulinic Acid Induces Apoptosis in Differentiated PC12 Cells Via ROS-Mediated Mitochondrial Pathway. Neurochem Res. 2017; 42 (4): 1130–40. DOI: 10.1007/s11064-016-2147-y
  43. Lu Y., Jia Y., Xue Z. et al. Recent Developments in Inonotus obliquus (Chaga mushroom) Polysaccharides: Isolation, Structural Characteristics, Biological Activities and Application. Polymers (Basel). 2021; 13 (9): 1441. DOI: 10.3390/polym13091441
  44. Nguyen T.M.N., Le H.S., Le B.V. et al. Anti-allergic effect of inotodiol, a lanostane triterpenoid from Chaga mushroom, via selective inhibition of mast cell function. Int Immunopharmacol. 2020; 81: 106244. DOI: 10.1016/j.intimp.2020.106244
  45. Maza P.A.M.A., Lee J.H., Kim Y.S. et al. Inotodiol From Inonotus obliquus Chaga Mushroom Induces Atypical Maturation in Dendritic Cells. Front Immunol. 2021; 12: 650841. DOI: 10.3389/fimmu.2021.650841
  46. Kou R.W., Han R., Gao Y.Q. et al. Anti-neuroinflammatory polyoxygenated lanostanoids from Chaga mushroom Inonotus obliquus. Phytochemistry. 2021; 184: 112647. DOI: 10.1016/j.phytochem.2020.112647
  47. Ali-Seyed M., Jantan I., Vijayaraghavan K. et al. Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy. Chem Biol Drug Des. 2016; 87 (4): 517–36. DOI: 10.1111/cbdd.12682
  48. Spivak A.Y., Nedopekina D.A., Gubaidullin R.R. et al. Conjugation of Natural Triterpenic Acids with Delocalized Lipophilic Cations: Selective Targeting Cancer Cell Mitochondria. J Pers Med. 2021; 11 (6): 470. DOI: 10.3390/jpm11060470
  49. Alzand K.I., Ünal S., Boufaris M.S.M. Lanostane-Type Triterpenes and Abietane-Type Diterpene from the Sclerotia of Chaga Medicinal Mushroom, Inonotus obliquus (Agaricomycetes), and Their Biological Activities. Int J Med Mushrooms. 2018; 20 (6): 507–16. DOI: 10.1615/IntJMedMushrooms.2018026007
  50. Nikitina S.A., Khabibrakhmanova V.R., Sysoeva M.A. Composition and biological activity of triterpenes and steroids from Inonotus obliquus (chaga). Biomed Khim. 2016; 62 (4): 369–75. DOI: 10.18097/PBMC20166204369
  51. Zou C.X., Dong S.H., Hou Z.L. et al. Modified lanostane-type triterpenoids with neuroprotective effects from the fungus Inonotus obliquus. Bioorg Chem. 2020; 105: 104438. DOI: 10.1016/j.bioorg.2020.104438
  52. Wei Y.M., Yang L., Mei W.L. et al. Phenolic compounds from the sclerotia of Inonotus obliquus. Nat Prod Res. 2020: 1–5. DOI: 10.1080/14786419.2020.1833202
  53. Zou C.X., Zhang Y.Y., Bai M. et al. Aromatic compounds from the sclerotia of Inonotus obliquus. Nat Prod Res. 2021; 35 (14): 2454–7. DOI: 10.1080/14786419.2019.1677656
  54. Živković L., Bajić V., Topalović D. et al. Antigenotoxic Effects of Biochaga and Dihydroquercetin (Taxifolin) on H2O2-Induced DNA Damage in Human Whole Blood Cells. Oxid Med Cell Longev. 2019; 2019: 5039372. DOI: 10.1155/2019/5039372