BioChaga is a sublimated birch fungus chaga extract with proven antitumor and immunomodulatory effects, which is produced according to the author’s unique technology

DOI: https://doi.org/10.29296/25877305-2022-03-14
Issue: 
3
Year: 
2022

Professor D. Dedov, MD Tver State Medical University

The paper reviews Russian and foreign scientific publications that reflect the issues of using chaga (Polyporus sulphureus) in clinical practice. It shows the features of the physicochemical composition of a sublimated BioChaga extract and presents the efficiency of using BioChaga extract in oncology. The antitumor, immunomodulatory, detoxifying, and anti-inflammatory effects of the extract are noted.

Keywords: 
therapy
chaga extract
BioChaga
antitumor
immunomodulatory
detoxifying effects
production technology
Inonotus obliquus



References: 
  1. Zmitrovich I.V., Denisova N.P., Balandajkin M.E. i dr. Chaga i ee bioaktivnye kompleksy: istorija i perspektivy. Formuly Farmatsii. 2020; 2 (2): 84–93. DOI: 10.17816/phf34803
  2. Sinkina T. Biodigidrokvertsetin (BDK) i Biochaga (BCh) kak soprovoditel'naja terapija pri himioterapevticheskom i posleoperatsionnom kurse distantsionnoj luchevoj terapii raka molochnoj zhelezy. Meditsina: tselevye proekty. 2020; 36: 28–30.
  3. Ganov D.I. Ispol'zovanie kachestvennyh prirodnyh BADov v kachestve soprovoditel'noj terapii pri radikal'nom luchevom lechenii i himioterapii onkourologicheskih patsientov. Vrach. 2021; 32 (11): 76–9. DOI: 10.29296/25877305-2021-11-16
  4. Duru K.C., Kovaleva E.G., Danilova I.G. et al. The pharmacological potential and possible molecular mechanisms of action of Inonotus obliquus from preclinical studies. Phytother Res. 2019; 33 (8): 1966–80. DOI: 10.1002/ptr.6384
  5. Eid J.I., Das B., Al-Tuwaijri M.M. et al. Targeting SARS-CoV-2 with Chaga mushroom: An in silico study toward developing a natural antiviral compound. Food Sci Nutr. 2021; 9 (12): 6513–23. DOI: 10.1002/fsn3.2576
  6. Zhao Y., Zheng W. Deciphering the antitumoral potential of the bioactive metabolites from medicinal mushroom Inonotus obliquus. J Ethnopharmacol. 2021; 265: 113321. DOI: 10.1016/j.jep.2020.113321
  7. Sousa J.L.C., Freire C.S.R., Silvestre A.J.D. et al. Recent Developments in the Functionalization of Betulinic Acid and Its Natural Analogues: A Route to New Bioactive Compounds. Molecules. 2019; 24 (2): 355. DOI: 10.3390/molecules24020355
  8. Zmitrovich I.V., Belova N.V., Balandaykin M.E. et al. Cancer without Pharmacological Illusions and a Niche for Mycotherapy (Review). Int J Med Mushrooms. 2019; 21 (2): 105–19. DOI: 10.1615/IntJMedMushrooms.2019030047
  9. Jöhrer K., Ҫiҫek S.S. Multiple Myeloma Inhibitory Activity of Plant Natural Products. Cancers (Basel). 2021; 13 (11): 2678. DOI: 10.3390/cancers13112678
  10. Zhao F., Mai Q., Ma J. et al. Triterpenoids from Inonotus obliquus and their antitumor activities. Fitoterapia. 2015; 101: 34–40. DOI: 10.1016/j.fitote.2014.12.005
  11. Kim Y.R. Immunomodulatory Activity of the Water Extract from Medicinal Mushroom Inonotus obliquus. Mycobiology. 2005; 33 (3): 158–62. DOI: 10.4489/MYCO.2005.33.3.158
  12. Szychowski K.A., Skóra B., Pomianek T. et al. Inonotus obliquus – from folk medicine to clinical use. J Tradit Complement Med. 2020; 11 (4): 293–302. DOI: 10.1016/j.jtcme.2020.08.003
  13. Baek J., Roh H.S., Baek K.H. et al. Bioactivity-based analysis and chemical characterization of cytotoxic constituents from Chaga mushroom (Inonotus obliquus) that induce apoptosis in human lung adenocarcinoma cells. J Ethnopharmacol. 2018; 224: 63–75. DOI: 10.1016/j.jep.2018.05.025
  14. Kumar P., Bhadauria A.S., Singh A.K. et al. Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications. Life Sci. 2018; 209: 24–33. DOI: 10.1016/j.lfs.2018.07.056
  15. Wang X., Lu X., Zhu R. et al. Betulinic Acid Induces Apoptosis in Differentiated PC12 Cells Via ROS-Mediated Mitochondrial Pathway. Neurochem Res. 2017; 42 (4): 1130–40. DOI: 10.1007/s11064-016-2147-y
  16. Lu Y., Jia Y., Xue Z. et al. Recent Developments in Inonotus obliquus (Chaga mushroom) Polysaccharides: Isolation, Structural Characteristics, Biological Activities and Application. Polymers (Basel). 2021; 13 (9): 1441. DOI: 10.3390/polym13091441
  17. Nguyen T.M.N., Le H.S., Le B.V. et al. Anti-allergic effect of inotodiol, a lanostane triterpenoid from Chaga mushroom, via selective inhibition of mast cell function. Int Immunopharmacol. 2020; 81: 106244. DOI: 10.1016/j.intimp.2020.106244
  18. Maza P.A.M.A., Lee J.H., Kim Y.S. et al. Inotodiol From Inonotus obliquus Chaga Mushroom Induces Atypical Maturation in Dendritic Cells. Front Immunol. 2021; 12: 650841. DOI: 10.3389/fimmu.2021.650841
  19. Kou R.W., Han R., Gao Y.Q. et al. Anti-neuroinflammatory polyoxygenated lanostanoids from Chaga mushroom Inonotus obliquus. Phytochemistry. 2021; 184: 112647. DOI: 10.1016/j.phytochem.2020.112647
  20. Ali-Seyed M., Jantan I., Vijayaraghavan K. et al. Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy. Chem Biol Drug Des. 2016; 87 (4): 517–36. DOI: 10.1111/cbdd.12682
  21. Spivak A.Y., Nedopekina D.A., Gubaidullin R.R. et al. Conjugation of Natural Triterpenic Acids with Delocalized Lipophilic Cations: Selective Targeting Cancer Cell Mitochondria. J Pers Med. 2021; 11 (6): 470. DOI: 10.3390/jpm11060470
  22. Alzand K.I., Ünal S., Boufaris M.S.M. Lanostane-Type Triterpenes and Abietane-Type Diterpene from the Sclerotia of Chaga Medicinal Mushroom, Inonotus obliquus (Agaricomycetes), and Their Biological Activities. Int J Med Mushrooms. 2018; 20 (6): 507–16. DOI: 10.1615/IntJMedMushrooms.2018026007
  23. Nikitina S.A., Khabibrakhmanova V.R., Sysoeva M.A. Composition and biological activity of triterpenes and steroids from Inonotus obliquus (chaga). Biomed Khim. 2016; 62 (4): 369–75. DOI: 10.18097/PBMC20166204369
  24. Zou C.X., Dong S.H., Hou Z.L. et al. Modified lanostane-type triterpenoids with neuroprotective effects from the fungus Inonotus obliquus. Bioorg Chem. 2020; 105: 104438. DOI: 10.1016/j.bioorg.2020.104438
  25. Wei Y.M., Yang L., Mei W.L. et al. Phenolic compounds from the sclerotia of Inonotus obliquus. Nat Prod Res. 2020: 1–5. DOI: 10.1080/14786419.2020.1833202
  26. Zou C.X., Zhang Y.Y., Bai M. et al. Aromatic compounds from the sclerotia of Inonotus obliquus. Nat Prod Res. 2021; 35 (14): 2454–7. DOI: 10.1080/14786419.2019.1677656
  27. Živković L., Bajić V., Topalović D. et al. Antigenotoxic Effects of Biochaga and Dihydroquercetin (Taxifolin) on H2O2-Induced DNA Damage in Human Whole Blood Cells. Oxid Med Cell Longev. 2019; 2019: 5039372. DOI: 10.1155/2019/5039372
  28. Zmitrovich I.V., Denisova N.P., Balandaykin M.E. et al. Chaga and its bioactive complexes: history and perspectives. Pharmacy Formulas. 2020; 2 (2): 84–93 (in Russ.). DOI: 10.17816/phf34803
  29. Sinkina T. Biodigidrokvertsetin (BDK) i Biochaga (BCh) kak soprovoditel’naya terapiya pri khimioterapevticheskom i posleoperatsionnom kurse distantsionnoi luchevoi terapii raka molochnoi zhelezy. Meditsina: tselevye proekty. 2020; 36: 28–30
  30. Ganov D. Use of high-quality natural dietary supplements as accompanying therapy in patients during radical radiotherapy and chemotherapy for urological cancer. Vrach. 2021; 32 (11): 76–9. DOI: 10.29296/25877305-2021-11-16
  31. Duru K.C., Kovaleva E.G., Danilova I.G. et al. The pharmacological potential and possible molecular mechanisms of action of Inonotus obliquus from preclinical studies. Phytother Res. 2019; 33 (8): 1966–80. DOI: 10.1002/ptr.6384
  32. Eid J.I., Das B., Al-Tuwaijri M.M. et al. Targeting SARS-CoV-2 with Chaga mushroom: An in silico study toward developing a natural antiviral compound. Food Sci Nutr. 2021; 9 (12): 6513–23. DOI: 10.1002/fsn3.2576
  33. Zhao Y., Zheng W. Deciphering the antitumoral potential of the bioactive metabolites from medicinal mushroom Inonotus obliquus. J Ethnopharmacol. 2021; 265: 113321. DOI: 10.1016/j.jep.2020.113321
  34. Sousa J.L.C., Freire C.S.R., Silvestre A.J.D. et al. Recent Developments in the Functionalization of Betulinic Acid and Its Natural Analogues: A Route to New Bioactive Compounds. Molecules. 2019; 24 (2): 355. DOI: 10.3390/molecules24020355
  35. Zmitrovich I.V., Belova N.V., Balandaykin M.E. et al. Cancer without Pharmacological Illusions and a Niche for Mycotherapy (Review). Int J Med Mushrooms. 2019; 21 (2): 105–19. DOI: 10.1615/IntJMedMushrooms.2019030047
  36. Jöhrer K., Ҫiҫek S.S. Multiple Myeloma Inhibitory Activity of Plant Natural Products. Cancers (Basel). 2021; 13 (11): 2678. DOI: 10.3390/cancers13112678
  37. Zhao F., Mai Q., Ma J. et al. Triterpenoids from Inonotus obliquus and their antitumor activities. Fitoterapia. 2015; 101: 34–40. DOI: 10.1016/j.fitote.2014.12.005
  38. Kim Y.R. Immunomodulatory Activity of the Water Extract from Medicinal Mushroom Inonotus obliquus. Mycobiology. 2005; 33 (3): 158–62. DOI: 10.4489/MYCO.2005.33.3.158
  39. Szychowski K.A., Skóra B., Pomianek T. et al. Inonotus obliquus – from folk medicine to clinical use. J Tradit Complement Med. 2020; 11 (4): 293–302. DOI: 10.1016/j.jtcme.2020.08.003
  40. Baek J., Roh H.S., Baek K.H. et al. Bioactivity-based analysis and chemical characterization of cytotoxic constituents from Chaga mushroom (Inonotus obliquus) that induce apoptosis in human lung adenocarcinoma cells. J Ethnopharmacol. 2018; 224: 63–75. DOI: 10.1016/j.jep.2018.05.025
  41. Kumar P., Bhadauria A.S., Singh A.K. et al. Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications. Life Sci. 2018; 209: 24–33. DOI: 10.1016/j.lfs.2018.07.056
  42. Wang X., Lu X., Zhu R. et al. Betulinic Acid Induces Apoptosis in Differentiated PC12 Cells Via ROS-Mediated Mitochondrial Pathway. Neurochem Res. 2017; 42 (4): 1130–40. DOI: 10.1007/s11064-016-2147-y
  43. Lu Y., Jia Y., Xue Z. et al. Recent Developments in Inonotus obliquus (Chaga mushroom) Polysaccharides: Isolation, Structural Characteristics, Biological Activities and Application. Polymers (Basel). 2021; 13 (9): 1441. DOI: 10.3390/polym13091441
  44. Nguyen T.M.N., Le H.S., Le B.V. et al. Anti-allergic effect of inotodiol, a lanostane triterpenoid from Chaga mushroom, via selective inhibition of mast cell function. Int Immunopharmacol. 2020; 81: 106244. DOI: 10.1016/j.intimp.2020.106244
  45. Maza P.A.M.A., Lee J.H., Kim Y.S. et al. Inotodiol From Inonotus obliquus Chaga Mushroom Induces Atypical Maturation in Dendritic Cells. Front Immunol. 2021; 12: 650841. DOI: 10.3389/fimmu.2021.650841
  46. Kou R.W., Han R., Gao Y.Q. et al. Anti-neuroinflammatory polyoxygenated lanostanoids from Chaga mushroom Inonotus obliquus. Phytochemistry. 2021; 184: 112647. DOI: 10.1016/j.phytochem.2020.112647
  47. Ali-Seyed M., Jantan I., Vijayaraghavan K. et al. Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy. Chem Biol Drug Des. 2016; 87 (4): 517–36. DOI: 10.1111/cbdd.12682
  48. Spivak A.Y., Nedopekina D.A., Gubaidullin R.R. et al. Conjugation of Natural Triterpenic Acids with Delocalized Lipophilic Cations: Selective Targeting Cancer Cell Mitochondria. J Pers Med. 2021; 11 (6): 470. DOI: 10.3390/jpm11060470
  49. Alzand K.I., Ünal S., Boufaris M.S.M. Lanostane-Type Triterpenes and Abietane-Type Diterpene from the Sclerotia of Chaga Medicinal Mushroom, Inonotus obliquus (Agaricomycetes), and Their Biological Activities. Int J Med Mushrooms. 2018; 20 (6): 507–16. DOI: 10.1615/IntJMedMushrooms.2018026007
  50. Nikitina S.A., Khabibrakhmanova V.R., Sysoeva M.A. Composition and biological activity of triterpenes and steroids from Inonotus obliquus (chaga). Biomed Khim. 2016; 62 (4): 369–75. DOI: 10.18097/PBMC20166204369
  51. Zou C.X., Dong S.H., Hou Z.L. et al. Modified lanostane-type triterpenoids with neuroprotective effects from the fungus Inonotus obliquus. Bioorg Chem. 2020; 105: 104438. DOI: 10.1016/j.bioorg.2020.104438
  52. Wei Y.M., Yang L., Mei W.L. et al. Phenolic compounds from the sclerotia of Inonotus obliquus. Nat Prod Res. 2020: 1–5. DOI: 10.1080/14786419.2020.1833202
  53. Zou C.X., Zhang Y.Y., Bai M. et al. Aromatic compounds from the sclerotia of Inonotus obliquus. Nat Prod Res. 2021; 35 (14): 2454–7. DOI: 10.1080/14786419.2019.1677656
  54. Živković L., Bajić V., Topalović D. et al. Antigenotoxic Effects of Biochaga and Dihydroquercetin (Taxifolin) on H2O2-Induced DNA Damage in Human Whole Blood Cells. Oxid Med Cell Longev. 2019; 2019: 5039372. DOI: 10.1155/2019/5039372