Идеальный биомаркер кардиоваскулярного риска – какой он?

DOI: https://doi.org/10.29296/25877305-2019-09-04
Номер журнала: 
9
Год издания: 
2019

Ю. Дылева(1), кандидат медицинских наук, О. Груздева(1, 2), доктор медицинских наук, Е. Учасова(1), кандидат медицинских наук 1-Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний, Кемерово 2-Кемеровский государственный медицинский университет E-mail: dyleva87@yandex.ru

Сердечно-сосудистые заболевания остаются основной причиной высокой смертности в мире. Огромное внимание уделяется раннему выявлению и диагностике патологических состояний, а также улучшению терапевтической тактики лечения. С появлением высокочувствительных клинико-лабораторных методов исследования стали возможными выявление новых биологических маркеров кардиоваскулярного риска, оценка их физиологической и патогенетической роли, разработка на их основе прогностических моделей риска в дополнение к уже существующим и хорошо зарекомендовавшим себя прогностическим шкалам, что, безусловно, может способствовать повышению качества оказываемой медицинской помощи. Сегодня насчитывается более 100 новых суррогатных биомаркеров сердечно-сосудистой патологии, большую часть из них еще предстоит подробно изучить. В обзоре представлены общие принципы и подходы к оценке биомаркеров, ключевые статистические аспекты их исследования с акцентом на клиническую значимость до того, как любой потенциальный биомаркер может быть внедрен в практику.

Ключевые слова: 
кардиология
биомаркер
кардиоваскулярный риск
сердечно-сосудистые заболевания

Для цитирования
Дылева Ю., Груздева О., Учасова Е. Идеальный биомаркер кардиоваскулярного риска – какой он? . Врач, 2019; (9): 24-30 https://doi.org/10.29296/25877305-2019-09-04


Список литературы: 
  1. Balagopal P., de Ferranti S., Cook S. et al. Nontraditional risk factors and biomarkers for cardiovascular disease: mechanistic, research, and clinical considerations for youth: a scientific statement from the American Heart Association // Circulation. – 2011; 123: 2749–69. DOI: 10.1161/CIR.0b013e31821c7c64.
  2. Goff D., Lloyd-Jones D., Bennett G. ACC/AHA Guideline on the Assessment of Cardiovascular Risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines // J. Am. Coll. Cardiol. – 2014; 63 (25 Pt. B): 2935–59. DOI: 10.1016/j.jacc.2013.11.005.
  3. Atkinson A., Colburn W., DeGruttola V. et al. Biomarkers and surrogateendpoints: preferred definitions and conceptual framework // Clin. Pharmacol. Ther. – 2001; 69: 89–95. DOI: 10.1067/mcp.2001.113989.
  4. Malottki K., Biswas M., Deeks J. et al. Stratified medicine in European Medicines Agency licensing: a systematic review of predictive biomarkers // BMJ Open. – 2014; 4: e004188. DOI: 10.1136/bmjopen-2013-004188.
  5. Сlinicaltrials.gov // Comparison of Saocubitril/valsartaN Versus Enalapril on Effect on NTpro-BNP in Patients Stabilized From an Acute Heart Failure Episode. (PIONEER-HF). Available at: https://clinicaltrials.gov/ct2/show/NCT02554890/ [Accessed 18 Sept., 2015].
  6. LaBaer J. So, you want to look for biomarkers (introduction to the special biomarkers issue) // J. Proteome Res. – 2005; 4 (4): 1053–9. DOI: 10.1021/pr0501259.
  7. Gill R. Multistate life-tables and regression models // Math. Popul. Stud. – 1992; 3 (4): 259–76. DOI: 10.1080/08898489209525345.
  8. Pencina M., D’Agostino R., D’Agostino R. Jr. et al. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond // Stat Med. – 2008; 27: 157–72. DOI: 10.1002/sim.2929.
  9. Morrow D., Antman E. Evaluation of high-sensitivity assays for cardiac troponin // Clin. Chem. – 2009; 55: 5–8. DOI: 10.1002/sim.2929.
  10. Kaplan R., Aviles-Santa M., Parrinello C. et al. Body mass index, sex, and cardiovascular disease risk factors among hispanic/latino adults: hispanic community health study/study of latinos // J. Am. Heart Assoc. – 2014; 3: e000923. DOI: 10.1161/JAHA.114.000923.
  11. Lemeshow S., Hosmer D. A review of goodness of fit statistics for use in the development of logistic regression models // Am. J. Epidemiol. – 1982; 115: 92–106.
  12. Guder W. Preanalytical factors and their influence on analytical duality specifications // Scand. J. Clin. Lab. Invest. – 1999; 59 (7): 545–9.
  13. Wallace K., Hausner E., Herman E. et al. Serum troponins as biomarkers of drug-induced cardiac toxicity // Toxicol. Pathol. – 2004; 32 (1): 106–21. DOI: 10.1080/01926230490261302.
  14. Ware J. The limitations of risk factors as prognostic tools // N. Engl. J. Med. – 2006; 355: 2615–7. DOI: 10.1056/NEJMp068249.
  15. Emerging Risk Factors Collaboration, Kaptoge S., Di Angelantonio E. et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction // N. Engl. J. Med. – 2012; 367: 1310–20. DOI: 10.1056/NEJMoa1107477.
  16. Greenland P., O’Malley P. When is a new prediction marker useful? A consideration of lipoprotein-associated phospholipase A2 and C-reactive protein for stroke risk // Arch. Intern. Med. – 2005; 165 (21): 2454–6. DOI: 10.1001/archinte.165.21.2454.
  17. Wang T., Gona P., Larson M. et al. Multiple biomarkers for the prediction of first major cardiovascular events and death // N. Engl. J. Med. – 2006; 355: 2631–9. DOI: 10.1056/NEJMoa055373.
  18. Kamath P., Wiesner R., Malinchoc M. et al. A model to predict survival in patients with end-stage liver disease // Hepatology. – 2001; 33: 464–70. DOI: 10.1053/jhep.2001.22172.
  19. Ahmad T., Fiuzat M., Felker G. et al. Novel biomarkers in chronic heart failure // Nat. Rev. Cardiol. – 2012; 9 (6): 347–59. DOI: 10.1038/nrcardio.2012.37.
  20. D’Alessandro R., Masarone D., Buono A. et al. Natriuretic peptides: molecular biology, pathophysiology and clinical implications for the cardiologist // Future Cardiology. – 2013; 9 (4): 519–34. DOI:10.2217/fca.13.32.
  21. Takase H., Dohi Y. Kidney function crucially affects B-type natriuretic peptide (BNP), N-terminal proBNP and their relationship // Eur. J. Clin. Invest. –2014; 44: 303–8. DOI: 10.1111/eci.12234.
  22. McMurray J., Packer M., Desai A. et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure // N. Engl. J. Med. – 2014; 371: 993–1004. DOI: 10.1056/NEJMoa1409077.
  23. Maisel A., Mueller C., Nowak R. et al. Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (biomarkers in acute heart failure) trial // J. Am. Coll. Cardiol. – 2010; 55: 2062–76. DOI: 10.1016/j.jacc.2010.02.025.
  24. Januzzi J., Camargo C., Anwaruddin S. et al. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study // Am. J. Cardiol. – 2005; 95 (8): 948–54. DOI: 10.1016/j.amjcard.2004.12.032.
  25. Khan S., Dhillon O., Kelly D. et al. Plasma N-terminal B-type natriuretic peptide as an indicator of long-term survival after acute myocardial infarction: comparison with plasma midregionalproatrial natriuretic peptide: the LAMP (leicester acute myocardial infarction peptide) study // J. Am. Coll. Cardiol. – 2008; 51: 1857–64. DOI: 10.1016/j.jacc.2008.01.041.
  26. Masson S., Anand I., Favero C. et al. Serial measurement of cardiac troponin t using a highly sensitive assay in patients with chronic heart failure: data from 2 large randomized clinical trials // Circulation. – 2012; 125: 280–8. DOI: 10.1161/CIRCULATIONAHA.111.044149.
  27. de Antonio M., Lupon J., Galan A. et al. Combined use of high-sensitivity cardiac troponin t and N-terminal pro-B type natriuretic peptide improves measurements of performance over established mortality risk factors in chronic heart failure // Am. Heart J. – 2012; 163 (5): 821–8. DOI:10.1016/j.ahj.2012.03.004.
  28. Maisel A., Xue Y., Shah K. et al. Increased 90-day mortality in patients with acute heart failure with elevated copeptin: secondary results from the biomarkers in acute heart failure (BACH) study // Circ. Heart Fail. – 2011; 4: 613–20. DOI:10.1161/CIRCHEARTFAILURE.110.960096.
  29. Neuhold S., Huelsmann M., Strunk G. et al. Comparison of copeptin, B-typenatriuretic peptide, and amino-terminal pro-B-type natriuretic peptide in patients with chronic heart failure: prediction of death at different stages of the disease // J. Am. Coll. Cardiol. – 2008; 52: 266–72. DOI: 10.1016/S1567-4215(08)60319-7.
  30. Maisel A., Mueller C., Fitzgerald R. et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: The NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial // Eur. J. Heart Fail. – 2011; 13: 846–51. DOI:10.1093/eurjhf/hfr087.
  31. Nymo S., Ueland T., Askevold E. et al. The association between neutrophil gelatinase-associated lipocalin and clinical outcome in chronic heart failure: results from CORONA // J. Intern. Med. – 2012; 271: 436–43. DOI: 10.1111/j.1365-2796.2011.02503.x.
  32. Srivatsan V., George M., Shanmugam E. Utility of galectin-3 as a prognostic biomarker in heart failure: where do we stand? // Eur. J. Prev. Cardiol. – 2015; 22: 1096–110. DOI: 10.1177/2047487314552797.
  33. Edelmann F., Holzendorf V., Wachter R. et al. Galectin-3 in patients with heart failure with preserved ejection fraction: results from the Aldo-DHF trial // Eur. J. Heart Fail. – 2014; 17 (2): 214–23. DOI: 10.1002/ejhf.203.
  34. Dhingra R., Pencina M., Schrader P. et al. Relations of matrix remodeling biomarkers to blood pressure progression and incidence of hypertension in the community // Circulation. – 2009; 119: 1101–7. DOI: 10.1161/CIRCULATIONAHA.108.821769.
  35. O’Meara E., de Denus S., Rouleau J. et al. Circulating biomarkers in patients with heart failure and preserved ejection fraction // Curr. Heart Fail Rep. – 2013; 10: 350–8. DOI: 10.1007/s11897-013-0160-x.
  36. Sanada S., Hakuno D., Higgins L. et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system // J. Clin. Invest. – 2007; 117: 1538–49. DOI:10.1172/JCI30634.
  37. Aldous S., Richards A., Troughton R. et al. ST2 Has Diagnostic and Prognostic Utility for All-Cause Mortality and Heart Failure in Patients Presenting to the Emergency Department With Chest Pain // J. Cardiac Failure. – 2012; 18 (4): 304–10. DOI:10.1016/j.cardfail.2012.01.008.
  38. Учасова Е.Г., Груздева О.В., Дылева Ю.А. и др. Интерлейкин-33 и фиброз: современный взгляд на патогенез // Медицинская иммунология. – 2018; 20 (4): 477–84 [Uchashova E.G., Gruzdeva O.V., Dyleva Yu.A. et al. Interleukin-33 and fibrosis: a modern view on pathogenesis // Medical Immunology. – 2018; 20 (4): 477–84 (in Russ.)]. DOI: 10.15789/1563-0625-2018-4-477-484.
  39. Sabatine M., Morrow D., Higgins L. et al. Complementary roles for biomarkers of biomechanical strain ST2 and n-terminal prohormone B-type natriuretic peptide in patients with ST-elevation myocardial infarction // Circulation. – 2008; 117: 1936–44. DOI: 10.1161/CIRCULATIONAHA.107.728022.
  40. Kempf T., von Haehling S., Peter T. et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure // J. Am. Coll. Cardiol. – 2007; 50: 1054–60. DOI: 10.1016/j.jacc.2007.04.091.
  41. Wallentin L., Zethelius B., Berglund L. et al. GDF-15 for Prognostication of Cardiovascular and Cancer Morbidity and Mortality in Men // PLoS ONE. – 2013; 8 (12): e78797. DOI: 10.1371/journal.pone.0078797.
  42. Melman Y., Shah R., Das S. MicroRNAs in heart failure: is the picture becoming less miRky? // Circ. Heart Fail. – 2014; 7: 203–14. DOI: 10.1161/CIRCHEARTFAILURE.113.000266.
  43. Vegter E., van der Meer P., De Windt L. et al. MicroRNAs in heart failure: from biomarker to target for therapy // Eur. J. Heart Fail. – 2016; 18: 457–68. DOI: 10.1002/ejhf.495.
  44. Watson C., Gupta S., O’Connell E. et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure // Eur. J. Heart Fail. – 2015; 17: 405–15. DOI: 10.1002/ejhf.244.
  45. Writing committee members, Yancy C., Jessup M. et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology Foundation/American Heart Association task Force on Practice Guidelines // Circulation. – 2013; 128 (16): e240–e327. DOI: 10.1161/CIR.0b013e31829e8776.
  46. McMurray J., Adamopoulos S., Anker S. et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task Force for the Diagnosis and treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC // Eur. Heart J. – 2012; 33 (14): 1787–847. DOI: 10.1093/eurheartj/ehs104