The world's strongest antimicrobial alkaloids in the composition of antiseptic Sanguiritrin® (0.2% alcohol solution)

DOI: https://doi.org/10.29296/25877305-2018-09-19
Download full text PDF
Issue: 
9
Year: 
2018

O. Rubleva, Candidate of Medical Sciences Medical Center «Instamed», Moscow region, Domodedovo

This review was devoted to the herbal antiseptic Sanguiritrin®, which consists of 2 of the 12 strongest antimicrobial alkaloids in the world (sanguinarine, chelerythrine). The antimicrobial and antiinflammatory effect of the drug is discussed. Its use with a preventive and curative purpose for infectious inflammatory diseases of the skin and mucous membranes in dentistry, otolaryngology, dermatology, neonatology, gynecology and surgery is described.

Keywords: 
Sanguiritrin®
sanguinarine
chelerythrine
bacterial infection
fungal infection
inflammation



It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Cushnie T., Cushnie B., Lamb A. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities // Int. J. Antimicrob. Agents. – 2014; 44 (5): 377–86.
  2. Abdallah E. Plants: An alternative source for antimicrobials // JAPS. – 2011; 1 (6): 16–20.
  3. Chandra H., Bishnoi P., Yadav A. et al. Antimicrobial Resistance and the Alternative Resources with Special Emphasis on Plant-Based Antimicrobials – A Review // Plants (Basel). – 2017; 6 (2): pii: E16. DOI: 10.3390/plants6020016.
  4. Vichkanova S.A. Dannye klinicheskogo issledovanija antimikrobnogo rastitel'nogo preparata Sangviritrin // Rus. med. zhurn. – 2002; 10 (28): 1299–302.
  5. Zielińska S., Jezierska-Domaradzka A., Wójciak-Kosior M. et al. Greater Celandine’s Ups and Downs – 21 Centuries of Medicinal Uses of Chelidonium majus From the Viewpoint of Today’s Pharmacology // Front. Pharmacol. – 2018; 9: 299. DOI: 10.3389/fphar.2018.00299.
  6. Hamoud R., Reichling J., Wink M. Synergistic antimicrobial activity of combinations of sanguinarine and EDTA with vancomycin against multidrug resistant bacteria // Drug Metab. Lett. – 2014; 8 (2): 119–28.
  7. Patiño L., Prieto R., Cuca S. Zanthoxylum Genus as Potential Source of Bioactive Compounds. Bioactive Compounds in Phytomedicine, Prof. Iraj Rasooli (Ed.). / InTech, 2012; 218 p.
  8. Kelley C., Lu S., Parhi A. et al. Antimicrobial activity of various 4- and 5-substituted 1-phenylnaphthalenes // Eur. J. Med. Chem. – 2013; 60: 395–409.
  9. Obiang-Obounou B., Kang O., Choi J. et al. The mechanism of action of sanguinarine against methicillin-resistant Staphylococcus aureus // J. Toxicol. Sci. – 2011; 36 (3): 277–83.
  10. Yang S.-K., Low L.-Y., Yap P. et al. Plant-Derived Antimicrobials: Insights into Mitigation of Antimicrobial Resistance // Rec. Nat. Prod. – 2018; 12 (4): 295–316.
  11. Obiang-Obounou B., Kang O., Choi J. et al. In vitro potentiation of ampicillin, oxacillin, norfloxacin, ciprofloxacin, and vancomycin by sanguinarine against methicillin-resistant Staphylococcus aureus // Foodborne Pathog. Dis. – 2011; 8 (8): 869–74.
  12. Hamoud R., Reichling J., Wink M. Synergistic antibacterial activity of the combination of the alkaloid sanguinarine with EDTA and the antibiotic streptomycin against multidrug resistant bacteria // J. Pharm. Pharmacol. – 2015; 67 (2): 264–73.
  13. Chen Z., Li X., Wu X. et al. Synergistic Activity of Econazole-Nitrate and Chelerythrine against Clinical Isolates of Candida albicans // Iran J. Pharm. Res. – 2014; 13 (2): 567–73.
  14. Zhang Y., Liu Y., Wang T. et al. Natural compound sanguinarine chloride targets the type III secretion system of Salmonella enterica Serovar Typhimurium // Biochem. Biophys. Rep. – 2018; 14: 149–54.
  15. Cheng R., Chen X., Liu S. et al. Effect of Chelerythrine on glucosyltransferase and water-insoluble glucan of Streptococcus mutans // Shanghai Kou Qiang Yi Xue. – 2007; 16 (3): 324–7.
  16. Zhong H., Hu D., Hu G. et al. Activity of Sanguinarine against Candida albicans Biofilms // Antimicrob. Agents Chemother. – 2017; 61 (5): e02259-16.
  17. Weiss D. Bacterial cell division and the septal ring // Mol. Microbiol. – 2004; 54 (3): 588–97.
  18. Zhu L., Zhou B., Zhang B. et al. New 2-aryl-7,8-dimethoxy-3,4-dihydroisoquinolin-2-ium salts as potential antifungal agents: synthesis, bioactivity and structure-activity relationships // Sci. Rep. – 2017; 7 (1): Article ID 7537.
  19. Zhang Y., Ning Z., Lu C. et al. Triterpenoid resinous metabolites from the genus Boswellia: pharmacological activities and potential species-identifying properties // Chem. Cent. J. – 2013; 7 (1): Article ID 153.
  20. Choi Y., Kim G., Lee H. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways // Drug Des. Devel. Ther. – 2014; 8: 1941–53.
  21. Wang X., Quinn P., Yan A. Kdo2-lipid A: structural diversity and impact on immunopharmacology // Biol. Rev. Camb. Philos. Soc. – 2015; 90 (2): 408–27.
  22. Maji A., Banerji P. Chelidonium majus L. (Greater celandine) – A Review on its Phytochemical and Therapeutic Perspectives // Int. J. Herbal Med. – 2015; 3 (1): 10–27.
  23. Walzog B., Gaehtgens P. Adhesion Molecules: The Path to a New Understanding of Acute Inflammation // News Physiol. Sci. – 2000; 15: 107–13.
  24. Agarwal S., Reynolds M., Pou S. et al. The effect of sanguinarine on human peripheral blood neutrophil viability and functions // Oral Microbiol. Immunol. – 1991; 6 (1): 51–61.
  25. Sweeney J., Nguyen P., Atkins K. et al. Chelerythrine chloride induces rapid polymorphonuclear leukocyte apoptosis through activation of caspase-3 // Shock. – 2000; 13 (6): 464–71.
  26. Klinicheskie issledovanija: Sangviritrin® (rastvor). http://www.bezrecepta.su
  27. Sangviritrin® (Sanguiritrin): instruktsija k primeneniju. https://www.rlsnet.ru