Журнал включен в российские и международные библиотечные и реферативные базы данных
ВАК (Россия)
РИНЦ (Россия)
EBSCO
Регистрационное агентство DOI (США)
Ulrichsweb (Ulrich’s Periodicals Directory)
Scientific Indexing Services

Самые сильные в мире противомикробные алкалоиды в составе антисептика Сангвиритрин® (0,2% спиртовой раствор)

DOI: https://doi.org/10.29296/25877305-2018-09-19
Скачать статью в PDF
Номер журнала: 
9
Год издания: 
2018

О. Рублева, кандидат медицинских наук Медицинский центр «Инстамед», Московская область, Домодедово E-mail: olgagurjeva@mail.ru

Обсуждаются свойства растительного антисептика Сангвиритрин®, в состав которого входят 2 из 12 самых сильных противомикробных алкалоидов (сангвинарин, хелеритрин). Рассматривается противомикробное и противовоспалительное действие препарата, описано его применение с профилактической и лечебной целью при инфекционно-воспалительных заболеваниях кожи и слизистых оболочек в стоматологии, оториноларингологии, дерматологии, неонатологии, гинекологии и хирургии.

Ключевые слова: 
фармакология
Сангвиритрин®
сангвинарин
хелеритрин
бактериальная инфекция
грибковая инфекция
воспаление

Для цитирования
Рублева О. Самые сильные в мире противомикробные алкалоиды в составе антисептика Сангвиритрин® (0,2% спиртовой раствор) . Врач, 2018; (9): 79-84 https://doi.org/10.29296/25877305-2018-09-19


It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

Список литературы: 
  1. Cushnie T., Cushnie B., Lamb A. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities // Int. J. Antimicrob. Agents. – 2014; 44 (5): 377–86.
  2. Abdallah E. Plants: An alternative source for antimicrobials // JAPS. – 2011; 1 (6): 16–20.
  3. Chandra H., Bishnoi P., Yadav A. et al. Antimicrobial Resistance and the Alternative Resources with Special Emphasis on Plant-Based Antimicrobials – A Review // Plants (Basel). – 2017; 6 (2): pii: E16. DOI: 10.3390/plants6020016.
  4. Вичканова С.А. Данные клинического исследования антимикробного растительного препарата Сангвиритрин // Рус. мед. журн. – 2002; 10 (28): 1299–302.
  5. Zielińska S., Jezierska-Domaradzka A., Wójciak-Kosior M. et al. Greater Celandine’s Ups and Downs – 21 Centuries of Medicinal Uses of Chelidonium majus From the Viewpoint of Today’s Pharmacology // Front. Pharmacol. – 2018; 9: 299. DOI: 10.3389/fphar.2018.00299.
  6. Hamoud R., Reichling J., Wink M. Synergistic antimicrobial activity of combinations of sanguinarine and EDTA with vancomycin against multidrug resistant bacteria // Drug Metab. Lett. – 2014; 8 (2): 119–28.
  7. Patiño L., Prieto R., Cuca S. Zanthoxylum Genus as Potential Source of Bioactive Compounds. Bioactive Compounds in Phytomedicine, Prof. Iraj Rasooli (Ed.). / InTech, 2012; 218 p.
  8. Kelley C., Lu S., Parhi A. et al. Antimicrobial activity of various 4- and 5-substituted 1-phenylnaphthalenes // Eur. J. Med. Chem. – 2013; 60: 395–409.
  9. Obiang-Obounou B., Kang O., Choi J. et al. The mechanism of action of sanguinarine against methicillin-resistant Staphylococcus aureus // J. Toxicol. Sci. – 2011; 36 (3): 277–83.
  10. Yang S.-K., Low L.-Y., Yap P. et al. Plant-Derived Antimicrobials: Insights into Mitigation of Antimicrobial Resistance // Rec. Nat. Prod. – 2018; 12 (4): 295–316.
  11. Obiang-Obounou B., Kang O., Choi J. et al. In vitro potentiation of ampicillin, oxacillin, norfloxacin, ciprofloxacin, and vancomycin by sanguinarine against methicillin-resistant Staphylococcus aureus // Foodborne Pathog. Dis. – 2011; 8 (8): 869–74.
  12. Hamoud R., Reichling J., Wink M. Synergistic antibacterial activity of the combination of the alkaloid sanguinarine with EDTA and the antibiotic streptomycin against multidrug resistant bacteria // J. Pharm. Pharmacol. – 2015; 67 (2): 264–73.
  13. Chen Z., Li X., Wu X. et al. Synergistic Activity of Econazole-Nitrate and Chelerythrine against Clinical Isolates of Candida albicans // Iran J. Pharm. Res. – 2014; 13 (2): 567–73.
  14. Zhang Y., Liu Y., Wang T. et al. Natural compound sanguinarine chloride targets the type III secretion system of Salmonella enterica Serovar Typhimurium // Biochem. Biophys. Rep. – 2018; 14: 149–54.
  15. Cheng R., Chen X., Liu S. et al. Effect of Chelerythrine on glucosyltransferase and water-insoluble glucan of Streptococcus mutans // Shanghai Kou Qiang Yi Xue. – 2007; 16 (3): 324–7.
  16. Zhong H., Hu D., Hu G. et al. Activity of Sanguinarine against Candida albicans Biofilms // Antimicrob. Agents Chemother. – 2017; 61 (5): e02259-16.
  17. Weiss D. Bacterial cell division and the septal ring // Mol. Microbiol. – 2004; 54 (3): 588–97.
  18. Zhu L., Zhou B., Zhang B. et al. New 2-aryl-7,8-dimethoxy-3,4-dihydroisoquinolin-2-ium salts as potential antifungal agents: synthesis, bioactivity and structure-activity relationships // Sci. Rep. – 2017; 7 (1): Article ID 7537.
  19. Zhang Y., Ning Z., Lu C. et al. Triterpenoid resinous metabolites from the genus Boswellia: pharmacological activities and potential species-identifying properties // Chem. Cent. J. – 2013; 7 (1): Article ID 153.
  20. Choi Y., Kim G., Lee H. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways // Drug Des. Devel. Ther. – 2014; 8: 1941–53.
  21. Wang X., Quinn P., Yan A. Kdo2-lipid A: structural diversity and impact on immunopharmacology // Biol. Rev. Camb. Philos. Soc. – 2015; 90 (2): 408–27.
  22. Maji A., Banerji P. Chelidonium majus L. (Greater celandine) – A Review on its Phytochemical and Therapeutic Perspectives // Int. J. Herbal Med. – 2015; 3 (1): 10–27.
  23. Walzog B., Gaehtgens P. Adhesion Molecules: The Path to a New Understanding of Acute Inflammation // News Physiol. Sci. – 2000; 15: 107–13.
  24. Agarwal S., Reynolds M., Pou S. et al. The effect of sanguinarine on human peripheral blood neutrophil viability and functions // Oral Microbiol. Immunol. – 1991; 6 (1): 51–61.
  25. Sweeney J., Nguyen P., Atkins K. et al. Chelerythrine chloride induces rapid polymorphonuclear leukocyte apoptosis through activation of caspase-3 // Shock. – 2000; 13 (6): 464–71.
  26. Клинические исследования: Сангвиритрин® (раствор). http://www.bezrecepta.su
  27. Сангвиритрин® (Sanguiritrin): инструкция к применению. https://www.rlsnet.ru