Role of the gut microbiota in aging and maintenance of active longevity. Part 2

DOI: https://doi.org/10.29296/25877305-2024-02-03
Issue: 
2
Year: 
2024

A. Ratnikova(1, 2), Candidate of Medical Sciences; Ya. Ashikhmin(1, 3, 4), Candidate of Medical Sciences; Professor V. Ratnikov(2), MD; M. Grudina(1); O. Dikur(5, 6), Candidate of Medical Sciences
1-Health Care Resort «First Line», Saint Petersburg
2-North-Western Regional Scientific and Clinical Center named after L.G. Sokolov, Federal Medical and Biological Agency of Russia, Saint Petersburg
3-Center for Healthcare Quality Assessment and Control, Ministry of Health
of Russia, Moscow
4-Clinic «DocMed», Moscow
5-I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
6-Clinic «Rassvet», Moscow

The role of intestinal microbiota in aging and maintaining active longevity is considered. The second part examines the issues of DNA damage by metabolites of various bacteria, which increases the risk of cancer. The interactions between the microbiota and the immune system, the connection between dysbiosis and the aging of the immune system, indicating specific molecular mechanisms, are described in detail. Particular attention is paid to lymphocytes of the Th17 subpopulation. Changes in the microbiome that are observed in individuals with cardiovascular diseases (arterial hypertension, coronary heart disease, chronic heart failure) are shown. The role of trimethylamine oxide and new mechanisms of damage to the cardiovascular system associated with the migration of immune cells from Peyer's patches to atherosclerotic plaques is revealed. Ideas about the relationship between the microbiome and cognitive function are given. Changes in the microbiome against the background of increased physical activity are considered. The final part of the article presents microbiome interventions aimed at increasing life expectancy and quality of life. These include diet, the use of prebiotics, probiotics, synbiotics, and medications that affect the microbiota.

Keywords: 
microbiota
aging
active longevity.



References: 
  1. gunrinola G.A., Oyewale J.O., Oshamika O. et al. The Human Microbiome and Its Impacts on Health. Int J Microbiol. 2020; 2020: 8045646. DOI: 10.1155/2020/804564
  2. Baliou S., Adamaki M, Spandidos D.А. et al. The microbiome, its molecular mechanisms and its potential as a therapeutic strategy against colorectal carcinogenesis (Review). World Acad Sci J. 2019; 1: 3–19. DOI: 10.3892/wasj.2018.6
  3. Lv G., Cheng N., Wang H. The Gut Microbiota, Tumorigenesis, and Liver Diseases. Engineering. 2017; 3 (1): 110–4. DOI: 10.1016/j.eng.2017.01.017
  4. Zapata H., Quagliarello V. The microbiota and microbiome in aging: potential implications in health and age-related diseases. J Am Geriatr Soc. 2015; 63 (4): 776–81. DOI: 10.1111/jgs.13310
  5. Jovel J., Dieleman L.А., Kao D. et al. The Human Gut Microbiome in Health and Disease. In book: Metagenomics: Perspectives, Methods, and Applications. Ed. Nagarajan M. 2018; рр. 197–213. DOI: 10.1016/B978-0-08-102268-9.00010-0
  6. Atarashi K., Tanoue T., Oshima K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013; 500 (7461): 232–6. DOI: 10.1038/nature12331
  7. Duggal N.A., Upton J., Phillips А.С. et al. An age-related numerical and functional deficit in CD19+ CD24hi CD38hi B cells is associated with an increase in systemic autoimmunity. Aging Cell. 2013; 12 (5): 873–81. DOI: 10.1111/acel.12114
  8. Yan Q., Gu Y., Li X. et al. Alterations of the Gut Microbiome in Hypertension. Front Cell Infect Microbiol. 2017; 7: 381. DOI: 10.3389/fcimb.2017.00381
  9. Emoto T., Yamashita T., Sasaki N. et al. Analysis of Gut Microbiota in Coronary Artery Disease Patients: a Possible Link between Gut Microbiota and Coronary Artery Disease. J Atheroscler Thromb. 2016; 23 (8): 908–21. DOI: 10.5551/jat.32672
  10. Pasini E., Aquilani R., Testa C. et al. Pathogenic Gut Flora in Patients with Chronic Heart Failure. JACC Heart Fail. 2016; 4 (3): 220–7. DOI: 10.1016/j.jchf.2015.10.009
  11. Yarur A.J., Deshpande A.R., Pechman D.M. et al. Inflammatory bowel disease is associated with an increased incidence of cardiovascular events. Am J Gastroenterol. 2011; 106 (4): 741–7. DOI: 10.1038/ajg.2011.63
  12. Тang W.H.W., Wang Z, Levison B.S. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013; 368 (17): 1575–84. DOI: 10.1056/NEJMoa1109400
  13. Wiedermann C.J., Kiechl S., Dunzendorfer S. et al. Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck Study. J Am Coll Cardiol. 1999; 34 (7): 1975–81. DOI: 10.1016/s0735-1097(99)00448-9
  14. Rath S., Heidrich B., Pieper D.H. et al. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome. 2017; 5 (1): 54. DOI: 10.1186/s40168-017-0271-9
  15. Li X.S., Obeid S., Klingenberg R. et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 2017; 38 (11): 814–24. DOI: 10.1093/eurheartj/ehw582
  16. Koeth R.A., Wang Z., Levison B.S. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013; 19 (5): 576–85. DOI: 10.1038/nm.3145
  17. Anderson J.R., Carroll I., Azcarate-Peril M.A. et al. A preliminary examination of gut microbiota, sleep, and cognitive flexibility in healthy older adults. Sleep Med. 2017; 38: 104–7. DOI: 10.1016/j.sleep.2017.07.018
  18. Verdi S., Jackson M.A., Beaumont M. et al. An Investigation Into Physical Frailty as a Link Between the Gut Microbiome and Cognitive Health. Front Aging Neurosci. 2018; 10: 398. DOI: 10.3389/fnagi.2018.00398
  19. Cattaneo A., Cattane N., Galluzzi S. et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging. 2017; 49: 60–8. DOI: 10.1016/j.neurobiolaging.2016.08.019
  20. Mailing L.J., Allen J.M., Buford T.W. et al. Exercise and the Gut Microbiome: A Review of the Evidence, Potential Mechanisms, and Implications for Human Health. Exerc Sport Sci Rev. 2019; 47 (2): 75–85. DOI: 10.1249/JES.0000000000000183
  21. Durk R.P., Castillo E., Márquez-Magaña L. et al. Gut Microbiota Composition Is Related to Cardiorespiratory Fitness in Healthy Young Adults. Int J Sport Nutr Exerc Metab. 2019; 29 (3): 249–53. DOI: 10.1123/ijsnem.2018-0024
  22. Estaki M., Pither J., Baumeister P. et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016; 4 (1): 42. DOI: 10.1186/s40168-016-0189-7
  23. Hughes R.L. A Review of the Role of the Gut Microbiome in Personalized Sports Nutrition. Front Nutr. 2020; 6: 191–218. DOI: 10.3389/fnut.2019.00191
  24. Song S.J., Amir A., Metcalf J.L. et al. Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies. mSystems. 2016; 1 (3): e00021-16. DOI: 10.1128/mSystems.00021-16
  25. Bressa C., Bailén-Andrino M., Pérez-Santiago J. et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS One. 2017; 12 (2): e0171352. DOI: 10.1371/journal.pone.0171352
  26. Sofi F., Cesari F., Abbate R. et al. Adherence to Mediterranean diet and health status: meta-analysis. BMJ. 2008; 337: a1344. DOI: 10.1136/bmj.a1344
  27. Meslier V., Laiola M., Roager Н.М. et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut. 2020; 69 (7): 1258–68. DOI: 10.1136/gutjnl-2019-320438
  28. Ray K. Gut microbiota: Filling up on fibre for a healthy gut. Nat Rev Gastroenterol Hepatol. 2018; 15 (2): 67. DOI: 10.1038/nrgastro.2018.2
  29. Desai M.S., Seekatz A.M., Koropatkin N.M. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016; 167 (5): 1339–53.e21. DOI: 10.1016/j.cell.2016.10.043
  30. Menni C., Zierer J., Pallister T. et al. Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Sci Rep. 2017; 7 (1): 11079. DOI: 10.1038/s41598-017-10382-2
  31. Ott B., Skurk T., Hastreiter L. et al. Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Sci Rep. 2017; 7 (1): 11955. DOI: 10.1038/s41598-017-12109-9
  32. Kellow N.J., Coughlan M.T., Reid C.M. Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr. 2014; 111 (7): 1147–61. DOI: 10.1017/S0007114513003607
  33. An R., Wilms E., Smolinska А. et al. Sugar Beet Pectin Supplementation Did Not Alter Profiles of Fecal Microbiota and Exhaled Breath in Healthy Young Adults and Healthy Elderly. Nutrients. 2019; 11 (9): 2193. DOI: 10.3390/nu11092193
  34. La Fata G., Weber P., Mohajeri M.Н. Probiotics and the Gut Immune System: Indirect Regulation. Probiot Antimicrob Proteins. 2018; 10 (1): 11–21. DOI: 10.1007/s12602-017-9322-6
  35. Gomma E.Z. Human gut microbiota/microbiome in health and diseases: a review. Antonie van Leeuwenhoek. 2020; 113 (12): 2019–40. DOI: 10.1007/s10482-020-01474-7
  36. Valentini L., Pinto A., Bourdel-Marchasson I. et al. Impact of personalized diet and probiotic supplementation on Inflammation, nutritional parameters and intestinal microbiota–The “RISTOMED project”: Randomized controlled trial in healthy older people. Clin Nutr. 2015; 34 (4): 593–602. DOI: 10.1016/j.clnu.2014.09.023
  37. Spaiser S.J., Culpepper T., Nieves Jr. C. et al. Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and ifidobacterium longum MM-2 Ingestion Induces a Less Inflammatory Cytokine Profile and a Potentially Beneficial Shift in Gut Microbiota in Older Adults: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. J Am Coll Nutr. 2015; 34 (6): 459–69. DOI: 10.1080/07315724.2014.983249
  38. Ipci K., Altintoprak N., Muluk N.В. et al. The possible mechanisms of the human microbiome in allergic diseases. Eur Arch Otorhinolaryngol. 2017; 274 (2): 617–26. DOI: 10.1007/s00405-016-4058-6
  39. Tillisch K., Labus J., Kilpatrick L. et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013; 144 (7): 1394–401. DOI: 10.1053/j.gastro.2013.02.043
  40. Messaoudi M., Lalonde R., Violle N. et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2011; 105 (5): 755–64. DOI: 10.1017/S0007114510004319
  41. Roshanravan N., Mahdavi R., Alizadeh E. et al. Effect of Butyrate and Inulin Supplementation on Glycemic Status, Lipid Profile and Glucagon-Like Peptide 1 Level in Patients with Type 2 Diabetes: A Randomized Double-Blind, Placebo-Controlled Trial. Horm Metab Res. 2017; 49 (11): 886–91. DOI: 10.1055/s-0043-119089
  42. Ahmadi S., Razazan A., Nagpal R. et al. Metformin reduces aging-related leaky gut and improves cognitive function by beneficially modulating gut microbiome/goblet cell/mucin axis. J Gerontol A Biol Sci Med Sci. 2020; 75 (7), e9-e21. DOI: 10.1093/gerona/glaa056
  43. Nie P., Li Z., Wang Y. et al. Gut microbiome interventions in human health and diseases. Med Res Rev. 2019; 39 (6): 2286–313. DOI: 10.1002/med.21584
  44. Menees S.B., Maneerattannaporn M., Kim H.M. et al. The efficacy and safety of rifaximin for the irritable bowel syndrome: a systematic review and meta-analysis. Am J Gastroenterol. 2012; 107 (1): 28–35. DOI: 10.1038/ajg.2011.355