HAC (Russian)
RSCI (Russian)
Ulrichsweb (Ulrich’s Periodicals Directory)
Scientific Indexing Services

Modern ideas about the mechanisms of development of preeclampsia

DOI: https://doi.org/10.29296/25877305-2024-01-07

A. Dudnikova(1), Candidate of Medical Sciences; E. Konchakova(2); E. Bedikyan(2); E. Ershova(2); R. Agutenkov(2)
1-Clinic of Kuban State Medical University, Ministry of Health of Russia, Krasnodar
2-Kuban State Medical University, Ministry of Health of Russia, Krasnodar

In recent years, the two-stage model of preeclampsia has been updated. The review examines modern ideas about the pathophysiology of preeclampsia. Particular attention is paid to studies of uterine artery remodeling, as well as the role of microRNAs in preeclampsia.

uterine artery remodeling

  1. Ananth C.V., Lavery J.A., Friedman A.M. et al. Serious Maternal Complications in Relation to Severe Pre-Eclampsia: A Retrospective Cohort Study of the Impact of Hospital Volume. BJOG. 2017; 124: 1246–53. DOI: 10.1111/1471-0528.14384
  2. Brown M.A., Magee L.A., Kenny L.C. et al. The Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis & Management Recommendations for International Practice. Pregnancy Hypertens. 2018; 13: 291–310. DOI: 10.1016/j.preghy.2018.05.004
  3. Irgens H.U., Reisaeter L., Irgens L.M. et al. Long Term Mortality of Mothers and Fathers after Pre-Eclampsia: Population Based Cohort Study. BMJ. 2001; 323: 1213–7. DOI: 10.1136/bmj.323.7323.1213
  4. Ferreira I., Peeters L.L., Stehouwer C.D.A. Preeclampsia and Increased Blood Pressure in the Offspring: Meta-Analysis and Critical Review of the Evidence. J Hypertens. 2009; 27: 1955–9. DOI: 10.1097/HJH.0b013e328331b8c6
  5. Wu P., Haththotuwa R., Kwok C.S. et al. Preeclampsia and Future Cardiovascular Health: A Systematic Review and Meta-Analysis. Circ Cardiovasc Qual Outcomes. 2017; 10: e003497. DOI: 10.1161/CIRCOUTCOMES.116.003497
  6. Pankiewicz K., Szczerba E., Maciejewski T. et al. Non-Obstetric Complications in Preeclampsia. Menopause Rev. 2019; 18: 99–109. DOI: 10.5114/pm.2019.85785
  7. Wu C.-C., Chen S.-H., Ho C.-H., et al. End-Stage Renal Disease after Hypertensive Disorders in Pregnancy. Am J Obstet Gynecol. 2014; 210: 147.e1–147.e8. DOI: 10.1016/j.ajog.2013.09.027
  8. Dai L., Chen Y., Sun W. et al. Association Between Hypertensive Disorders During Pregnancy and the Subsequent Risk of End-Stage Renal Disease: A Population-Based Follow-Up Study. J Obstet Gynaecol Can. 2018; 40: 1129–38. DOI: 10.1016/j.jogc.2018.01.022
  9. Vikse B.E. Pre-Eclampsia and the Risk of Kidney Disease. Lancet Lond Engl. 2013; 382: 104–6. DOI: 10.1016/S0140-6736(13)60741-2
  10. Rolnik D.L., Wright D., Poon L.C. et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N Engl J Med. 2017; 377: 613–22. DOI: 10.1056/NEJMoa1704559
  11. Committee on Obstetric Practice Committee Opinion No. 692: Emergent Therapy for Acute-Onset, Severe Hypertension during Pregnancy and the Postpartum Period. Obstet Gynecol. 2017; 129: e90–e95. DOI: 10.1097/AOG.0000000000002019
  12. Dhariwal N.K., Lynde G.C. Update in the Management of Patients with Preeclampsia. Anesthesiol Clin. 2017; 35: 95–106. DOI: 10.1016/j.anclin.2016.09.009
  13. Redman C.W. Current Topic: Pre-Eclampsia and the Placenta. Placenta. 1991; 12: 301–8. DOI: 10.1016/0143-4004(91)90339-H
  14. Roberts J.M., Redman C.W. Pre-Eclampsia: More than Pregnancy-Induced Hypertension. Lancet Lond Engl. 1993; 341: 1447–51. DOI: 10.1016/0140-6736(93)90889-O
  15. Rana S., Burke S.D., Karumanchi S.A. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. Am J Obstet Gynecol. 2022; 226 (2S): S1019–S1034. DOI: 10.1016/j.ajog.2020.10.022
  16. Chiarello D.I., Abad C., Rojas D. et al. Oxidative Stress: Normal Pregnancy versus Preeclampsia. Biochim Biophys Acta Mol Basis Dis. 2020; 1866: 165354. DOI: 10.1016/j.bbadis.2018.12.005
  17. Redman C.W., Sargent I.L., Staff A.C. IFPA Senior Award Lecture: Making Sense of Pre-Eclampsia – Two Placental Causes of Preeclampsia? Placenta. 2014;35:S20–S25. DOI: 10.1016/j.placenta.2013.12.008
  18. Staff A.C. The Two-Stage Placental Model of Preeclampsia: An Update. J Reprod Immunol. 2019; 134-135: 1–10. DOI: 10.1016/j.jri.2019.07.004
  19. Cox L.S., Redman C. The Role of Cellular Senescence in Ageing of the Placenta. Placenta. 2017; 52: 139–45. DOI: 10.1016/j.placenta.2017.01.116
  20. Albrecht E.D., Pepe G.J. Regulation of Uterine Spiral Artery Remodeling: A Review. Reprod Sci Thousand Oaks Calif. 2020; 27: 1932–42. DOI: 10.1007/s43032-020-00212-8
  21. Sato Y. Endovascular Trophoblast and Spiral Artery Remodeling. Mol Cell Endocrinol. 2020; 503: 110699. DOI: 10.1016/j.mce.2019.110699
  22. Shields C.A., McCalmon M., Ibrahim T. et al. Placental Ischemia-Stimulated T-Helper 17 Cells Induce Preeclampsia-Associated Cytolytic Natural Killer Cells during Pregnancy. Am J Physiol Regul Integr Comp Physiol. 2018; 315: R336–R343. DOI: 10.1152/ajpregu.00061.2018
  23. Nakimuli A., Chazara O., Hiby S.E. et al. A KIR B Centromeric Region Present in Africans but Not Europeans Protects Pregnant Women from Pre-Eclampsia. Proc Natl Acad Sci USA. 2015; 112: 845–50. DOI: 10.1073/pnas.1413453112
  24. Socha M.W., Malinowski B., Puk O. et al. The Role of NF-κB in Uterine Spiral Arteries Remodeling, Insight into the Cornerstone of Preeclampsia. Int J Mol Sci. 2021; 22: 704. DOI: 10.3390/ijms22020704
  25. Timokhina E., Strizhakov A., Ibragimova S. et al. Matrix Metalloproteinases MMP-2 and MMP-9 Occupy a New Role in Severe Preeclampsia. J Pregnancy. 2020; 2020: 8369645. DOI: 10.1155/2020/8369645
  26. Ueda M., Sato Y., Horie A. et al. Endovascular Trophoblast Expresses CD59 to Evade Complement-Dependent Cytotoxicity. Mol Cell Endocrinol. 2019; 490: 57–67. DOI: 10.1016/j.mce.2019.04.006
  27. Youssef L., Miranda J., Blasco M. et al. Complement and Coagulation Cascades Activation Is the Main Pathophysiological Pathway in Early-Onset Severe Preeclampsia Revealed by Maternal Proteomics. Sci Rep. 2021; 11: 3048. DOI: 10.1038/s41598-021-82733-z
  28. Lokki A.I., Teirilä L., Triebwasser M. et al. Dysfunction of Complement Receptors CR3 (CD11b/18) and CR4 (CD11c/18) in Preeclampsia: A Genetic and Functional Study. BJOG. 2021; 128 (8): 1282–91. DOI: 10.1111/1471-0528.16660
  29. Gallardo-Vara E., Gamella-Pozuelo L., Perez-Roque L. et al. Potential Role of Circulating Endoglin in Hypertension via the Upregulated Expression of BMP4. Cells. 2020; 9: 988. DOI: 10.3390/cells9040988
  30. Pérez-Roque L., Núñez-Gómez E., Rodriguez-Barbero A. et al. Pregnancy-Induced High Plasma Levels of Soluble Endoglin in Mice Lead to Preeclampsia Symptoms and Placental Abnormalities. Int J Mol Sci. 2020; 22: 165. DOI: 10.3390/ijms22010165
  31. Hu R., Jin H., Zhou S. et al. Proteomic Analysis of Hypoxia-Induced Responses in the Syncytialization of Human Placental Cell Line BeWo. Placenta. 2007; 28: 399–407. DOI: 10.1016/j.placenta.2006.07.005
  32. Sattar Taha A., Zahraei Z., Al-Hakeim H.K. Serum Apelin and Galectin-3 in Preeclampsia in Iraq. Hypertens Pregnancy. 2020; 39: 379–86. DOI: 10.1080/10641955.2020.1777300
  33. Ruikar K., Aithal M., Shetty P. et al. Placental Expression and Relative Role of Anti-Inflammatory Annexin A1 and Animal Lectin Galectin-3 in the Pathogenesis of Preeclampsia. Indian J Clin Biochem. 2022; 37 (1): 60–8. DOI: 10.1007/s12291-020-00952-z
  34. Than N.G., Romero R., Xu Y. et al. Evolutionary Origins of the Placental Expression of Chromosome 19 Cluster Galectins and Their Complex Dysregulation in Preeclampsia. Placenta. 2014; 35: 855–65. DOI: 10.1016/j.placenta.2014.07.015
  35. Liu Y., Meng H., Xu S. et al. Galectins for Diagnosis and Prognostic Assessment of Human Diseases: An Overview of Meta-Analyses. Med Sci Monit Int Med J Exp Clin Res. 2020; 26: e923901. DOI: 10.12659/MSM.923901
  36. Szewczyk G., Pyzlak M., Pankiewicz K. et al. The Potential Association between a New Angiogenic Marker Fractalkine and a Placental Vascularization in Preeclampsia. Arch Gynecol Obstet. 2021; 304 (2): 365–76. DOI: 10.1007/s00404-021-05966-3
  37. Skalis G., Katsi V., Miliou A. et al. MicroRNAs in Preeclampsia. MicroRNA. 2019; 8 (1): 28–35. DOI: 10.2174/2211536607666180813123303
  38. Szczerba E., Zajkowska A., Bochowicz A. et al. Downregulated Expression of MicroRNAs Associated with Cardiac Hypertrophy and Fibrosis in Physiological Pregnancy and the Association with Echocardiographically-Evaluated Myocardial Function. Biomed Rep. 2020; 13 :41. DOI: 10.3892/br.2020.1348
  39. Huang X., Wu L., Zhang G. et al. Elevated MicroRNA-181a-5p Contributes to Trophoblast Dysfunction and Preeclampsia. Reprod Sci Thousand Oaks Calif. 2019; 26: 1121–9. DOI: 10.1177/1933719118808916
  40. Brkić J., Dunk C., O’Brien J. et al. MicroRNA-218-5p Promotes Endovascular Trophoblast Differentiation and Spiral Artery Remodeling. Mol Ther J Am Soc Gene Ther. 2018; 26: 2189–205. DOI: 10.1016/j.ymthe.2018.07.009