Dilated cardiomyopathy as a clinical model of premature aging in humans

DOI: https://doi.org/10.29296/25877305-2023-12-02

K. Kravchenko(1); Professor D. Medvedev(1), MD; S. Morozkina(2), Candidate
of Chemical Sciences; D. Trotsyuk(3), 4; G. Gurko(1), MD; O. Podkaura(5), Candidate of Medical Sciences
1-Saint Petersburg Institute of Bioregulation and Gerontology
2-Saint Petersburg Research Institute of Phthisiopulmonology, Ministry of Health of Russia
3-Belgorod State National Research University
4-Saint Petersburg Medical and Social Institute
5-S.M. Kirov Military Medical Academy, Ministry of Defense of Russia,
Saint Petersburg

The compliance of dilated cardiomyopathy (DCM) with the requirements of a clinical model of premature aging in humans is substantiated. The pathogenetic basis of the formation of DCM and their relationship with changes associated with myocardial aging are considered. The study complements and clarifies the understanding of the pathogenetic mechanisms of premature aging of the human body and its clinical models, and also provides the basis for further research into the problem of premature aging of the body and age-related diseases.

dilated cardiomyopathy
model of premature aging.

  1. Пристром М.С., Пристром С.Л., Семененков И.И. Старение физиологическое и преждевременное. Современный взгляд на проблему. Международные обзоры: клиническая практика и здоровье. 2017; 5-6: 40–64 [Pristrom M.S., Pristrom S.L., Semenenkov I.I. Physiological and early aging. Modern view of the problem. Mezhdunarodnye obzory: klinicheskaya praktika i zdorov'e. 2017; 5-6: 40–64 (in Russ.)].
  2. Stenvinkel Р., Larsson Т. Chronic kidney disease: a clinical model of premature aging. Am J Kidney Dis. 2013; 62 (2): 339–51. DOI: 10.1053/j.ajkd.2012.11.051
  3. Franceschi C., Garagnani P., Morsiani C. et al. The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med (Lausanne). 2018; 5: 61. DOI: 10.3389/fmed.2018.00061
  4. Corley M.J., Pang A.P.S., Dody K. et al. Genome-wide DNA methylation profiling of peripheral blood reveals an epigenetic signature associated with severe COVID-19. J Leukoc Biol. 2021; 110 (1): 21–6. DOI: 10.1002/JLB.5HI0720-466R
  5. Horvath S., Garagnani P., Bacalini M.G. et al. Accelerated epigenetic aging in Down syndrome. Aging Cell. 2015; 14 (3): 491–5. DOI: 10.1111/acel.12325
  6. Horvath S., Ritz B.R. Increased epigenetic age and granulocyte counts in the blood of Parkinson's disease patients. Aging (Albany NY). 2015; 7 (12): 1130–42. DOI: 10.18632/aging.100859
  7. Horvath S., Levine A.J. HIV-1 Infection Accelerates Age According to the Epigenetic Clock. J Infect Dis. 2015; 212 (10): 1563–73. DOI: 10.1093/infdis/jiv277
  8. Maierhofer A., Flunkert J., Dittrich M. et al. Analysis of global DNA methylation changes in primary human fibroblasts in the early phase following X-ray irradiation. PLoS One. 2017; 12 (5): e0177442. DOI: 10.1371/journal.pone.0177442
  9. Martin-Herranz D.E., Aref-Eshghi E., Bonder M.J. et al. Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1. Genome Biol. 2019; 20 (1): 146. DOI: 10.1186/s13059-019-1753-9
  10. Акашева Д.У., Стражеско И.Д., Дудинская Е.Н. и др. Сердце и возраст (часть I): теории старения, морфологические изменения. Кардиоваскулярная терапия и профилактика. 2013; 12 (1): 88–94 [Akasheva D.U., Strazhesko I.D., Dudinskaya E.N. et al. Heart and age (part I): ageing theories and morphological changes. Cardiovascular Therapy and Prevention. 2013; 12 (1): 88–94 (in Russ.)]. DOI: 10.15829/1728-8800-2013-1-88-94
  11. Schultheiss H.P., Fairweather D., Caforio A.L.P. et al. Dilated cardiomyopathy. Nat Rev Dis Primers. 2019; 5 (1): 32. DOI: 10.1038/s41572-019-0084-1
  12. Алаева Е.Н., Нарусов О.Ю., Терещенко С.Н. и др. Диагностика и лечение дилатационной кардиомиопатии в повседневной клинической практике (данные первого российского регистра по дилатационной кардиомиопатии). Кардиологический вестник. 2014; 2: 54–61 [Alaeva E.N., Narusov O.Yu., Tereshchenko S.N. et al. Diagnosis and treatment of dilated cardiomyopathy in everyday clinical practice (data from the first Russian registry for dilated cardiomyopathy). Cardiological Bulletin. 2014; 2: 54–61 (in Russ.)].
  13. Вайханская Т.Г., Сивицкая Л.Н., Курушко Т.В. и др. Дилатационная кардиомиопатия: новый взгляд на проблему. Российский кардиологический журнал. 2019; 4: 35–47 [Vaykhanskaya T.G., Sivitskaya L.N., Kurushko T.V. et al. Dilated cardiomyopathy: reconceptualization of the problem. Russian Journal of Cardiology. 2019; 4: 35–47 (in Russ.)]. DOI: 10.15829/1560-4071-2019-4-35-47
  14. Hershberger R.E., Siegfried J.D. Update 2011: clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol. 2011; 57 (16): 1641–9. DOI: 10.1016/j.jacc.2011.01.015
  15. Losurdo P., Stolfo D., Merlo M. et al. Early Arrhythmic Events in Idiopathic Dilated Cardiomyopathy. JACC Clin Electrophysiol. 2016; 2 (5): 535–43. DOI: 10.1016/j.jacep.2016.05.002.
  16. Kadish A.H., Jacobson J.T. Early Arrhythmic Risk Assessment in Idiopathic Cardiomyopathy: A Tincture of Time Can Be the Wrong Medicine. JACC Clin Electrophysiol. 2016; 2 (5): 544–5. DOI: 10.1016/j.jacep.2016.07.011
  17. Mahmaljy H., Yelamanchili V.S., Singhal M. Dilated Cardiomyopathy. StatPearls. Treasure Island (FL): StatPearls Publishing, 2022. Available at: https://www.ncbi.nlm.nih.gov/books/NBK441911
  18. Piano M.R. Alcoholic Cardiomyopathy: Is it Time for Genetic Testing? J Am Coll Cardiol. 2018; 71 (20): 2303–5. DOI: 10.1016/j.jacc.2018.03.463
  19. Wilcox J.E., Hershberger R.E. Genetic cardiomyopathies. Curr Opin Cardiol. 2018; 33 (3): 354–62. DOI: 10.1097/HCO.0000000000000512
  20. McKenna W.J., Maron B.J., Thiene G. Classification, Epidemiology, and Global Burden of Cardiomyopathies. Circ Res. 2017; 121 (7): 722–30. DOI: 10.1161/CIRCRESAHA.117.309711
  21. Sagar S., Liu P.P., Cooper L.T. Jr. Myocarditis. Lancet. 2012; 379 (9817): 738–47. DOI: 10.1016/S0140-6736(11)60648-X
  22. Chothani S., Schäfer S., Adami E. et al. Widespread Translational Control of Fibrosis in the Human Heart by RNA-Binding Proteins. Circulation. 2019; 140 (11): 937–51. DOI: 10.1161/CIRCULATIONAHA.119.039596
  23. Вenjamin E.J., Blaha M.J., Chiuve S.E. et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation. 2017; 135 (10): e146–e603. DOI:10.1161/CIR.0000000000000485
  24. Koelling T.M., Aaronson K.D., Cody R.J. et al. Prognostic significance of mitral regurgitation and tricuspid regurgitation in patients with left ventricular systolic dysfunction. Am Heart J. 2002; 144 (3): 524–9. DOI: 10.1067/mhj.2002.123575
  25. Cojan-Minzat B.O., Zlibut A., Agoston-Coldea L. Non-ischemic dilated cardiomyopathy and cardiac fibrosis. Heart Fail Rev. 2021; 26 (5): 1081–101. DOI: 10.1007/s10741-020-09940-0
  26. Tannous C., Deloux R., Karoui A. et al. NMRK2 Gene Is Upregulated in Dilated Cardiomyopathy and Required for Cardiac Function and NAD Levels during Aging. Int J Mol Sci. 2021; 22 (7): 3534. DOI: 10.3390/ijms22073534
  27. Rai S., Badarinath A.R.S., George A. et al. Association of telomere length with diabetes mellitus and idiopathic dilated cardiomyopathy in a South Indian population: A pilot study. Mutat Res Genet Toxicol Environ Mutagen. 2022; 874-875: 503439. DOI: 10.1016/j.mrgentox.2021.503439
  28. Messner M., Ghadge S.K., Goetsch V. et al. Upregulation of the aging related LMNA splice variant progerin in dilated cardiomyopathy. PLoS One. 2018; 13 (4): e0196739. DOI: 10.1371/journal.pone.0196739