ENDOVASCULAR TREATMENT BEFORE OPERATIONS IN CLINIC OF TRAUMATOLOGY AND ORTHOPAEDICS

DOI: https://doi.org/10.29296/25877305-2023-03-04
Issue: 
3
Year: 
2023

S. Prozorov, MD; P. Ivanov, MD; N. Zadneprovsky, Candidate of Medical Sciences
N.V. Sklifosovky Research Institute for Emergency Medicine of the Moscow Health Department

The surgical treatment of arterial injury due to blunt trauma, heterotopic ossification, hemangiomas, aneurysmal bone cysts of skeleton, primary and metastatic bone tumors can lead to uncontrolled life-threating haemorrhage and blood loss. The aim of the present review is to analyze reports of the use and effectiveness of endovascular methods – preoperative embolization and stent graft implantation to reduce surgery risks in clinic of traumatology and orthopaedics.

Keywords: 
traumatology and orthopedics
bone fracture
bone tumors
endovascular treatment
embolization
stent-graft.
cardiovascular diseases
PCSK9 inhibitors
monoclonal antibodies
antisense nucleotides
small interfering ribonucleic acids



References: 
  1. Koroki Т., Kuroki Т., Abe Т. et al. Successful covered stent-graft treatment of superficial femoral arterial injury due to blunt trauma. Acute Med Surg. 2021; 8 (1): e639. DOI: 10.1002/ams2.639
  2. Sharma G., Singh R., Kumar A. et al. Acute femoral artery pseudoaneurysm due to lesser trochanter fragment: an unusual complication of an intertrochanteric fracture. Chin J Traumatol. 2013; 16 (5): 301–3.
  3. Aigner R., König Am., Mahnken Ah. et al. Interventional revascularization prior to operative fixation of fractures below the knee. A retrospective case series. Injury. 2021; 52 (7): 1939–43. DOI: 10.1016/j.injury.2021.04.039
  4. Aigner R., Lechler P., Boese C.K. et al. Standardised pre-operative diagnostics and treatment of peripheral arterial disease reduce wound complications in geriatric ankle fractures. Int Orthop. 2018; 42 (2): 395–400. DOI: 10.1007/s00264-017-3705-x
  5. de l'Escalopier N., Salga M., Gatin L. et al. Resection of heterotopic ossification around the hip after trauma. EFORT Open Rev. 2019; 4 (6): 263–8. DOI: 10.1302/2058-5241.4.180098
  6. Zielinski E., Chiang B.J.L., Satpathy J. The role of preoperative vascular imaging and embolisation for the surgical resection of bilateral hip heterotopic ossification. BMJ Case Rep. 2019; 12 (8): e230964. DOI: 10.1136/bcr-2019-230964
  7. Kim J.H., Park C., Son S.M. et al. Preoperative arterial embolization of heterotopic ossification around the hip joint. Yeungnam Univ J Med. 2018; 35 (1): 130–4. DOI: 10.12701/yujm.2018.35.1.130
  8. Stołtny T., Koczy B., Wawrzynek W. et al. Heterotopic ossification in patients after total hip replacement. Ortop Traumatol Rehabil. 2007; 9 (3): 264–72.
  9. Vogl T.J., Wolff J.D., Balzer J. et al. Preoperative arterial embolization in heterotopic ossification: a case report. Eur Radiol. 2001; 11 (6): 962–4. DOI: 10.1007/s003300000704
  10. Mavrogenis A.F., Rossi G., Calabrò T. et al. The role of embolization for hemangiomas. Musculoskelet Surg. 2012; 96 (2): 125–35. DOI: 10.1007/s12306-012-0207-2
  11. Matsumoto Y., Takahashi Y., Haraguchi A. et al. Intraosseous hemangioma arising in the clavicle. Skeletal Radiol. 2014; 43 (1): 89–93. DOI: 10.1007/s00256-013-1715-3
  12. Deventer N., Deventer N., Gosheger G. et al. Current strategies for the treatment of solitary and aneurysmal bone cysts: A review of the literature. J Bone Oncol. 2021; 30: 100384. DOI: 10.1016/j.jbo.2021.100384
  13. Mascard E., Gomez-Brouchet A., Lambot K. Bone cysts: unicameral and aneurysmal bone cyst. Orthop Traumatol Surg Res. 2015; 101 (1 Suppl): S119–127. DOI: 10.1016/j.otsr.2014.06.031
  14. Aycan O.E., Çamurcu İ.Y., Özer D. et al. Unusual localizations of unicameral bone cysts and aneurysmal bone cysts: A retrospective review of 451 cases. Acta Orthop Belg. 2015; 81 (2): 209–12.
  15. Rossi G., Rimondi E., Bartalena T. et al. Selective arterial embolization of 36 aneurysmal bone cysts of the skeleton with N-2-butyl cyanoacrylate. Skeletal Radiol. 2010; 39 (2): 161–7. DOI: 10.1007/s00256-009-0757-z
  16. Rossi G., Mavrogenis А.F., Facchini G. et al. How effective is embolization with N-2-butyl-cyanoacrylate for aneurysmal bone cysts? Int Orthop. 2017; 41 (8): 1685–92. DOI: 10.1007/s00264-016-3364-3
  17. Yildirim Е., Ersözlü S., Kirbaş I. et al. Treatment of pelvic aneurysmal bone cysts in two children: selective arterial embolization as an adjunct to curettage and bone grafting. Diagn Interv Radiol. 2007; 13 (1): 49–52.
  18. Cottalorda J., Chotel F., Kohler R. et al. Aneurysmal bone cysts of the pelvis in children: a multicenter study and literature review. J Pediatr Orthop. 2005; 25 (4): 471–5. DOI: 10.1097/01.bpo.0000158002.30800.8f
  19. Novais E.N., Zimmerman A.K., Lewallen L.W. et al. Functional outcomes and quality of life following surgical treatment of aneurysmal bone cysts of the pelvis in children. J Child Orthop. 2014; 8 (3): 281–8. DOI: 10.1007/s11832-014-0588-x
  20. Wathiong J., Brys P., Samson I. et al. Selective arterial embolization in the treatment of an aneurysmal bone cyst of the pelvis. JBR-BTR. 2003; 86 (6): 325–8.
  21. Owen R.J.T. Embolization of musculoskeletal bone tumors. Semin Intervent Radiol. 2010; 27 (2): 111–23. DOI: 10.1055/s-0030-1253510
  22. Lee V.N., Nithyananth M., Cherian V.M. et al. Preoperative embolisation in benign bone tumour excision. J Orthop Surg (Hong Kong). 2008; 16 (1): 80–3. DOI: 10.1177/230949900801600118
  23. Jha R., Sharma R., Rastogi S. et al. Preoperative embolization of primary bone tumors: A case control study. World J Radiol. 2016; 8 (4): 378–89. DOI: 10.4329/wjr.v8.i4.378
  24. Zhang H.-J., Yang J.-J., Lu J.-P. et al. Use of intra-arterial chemotherapy and embolization before limb salvage surgery for osteosarcoma of the lower extremity. Cardiovasc Intervent Radiol. 2009; 32 (4): 672–8. DOI: 10.1007/s00270-009-9546-2
  25. Al-Hadithy N., Gikas P., Perera J. et al. Pre-operative embolization of primary and secondary bone tumours is safe and effective: a retrospective study. World J Oncol. 2011; 2 (6): 319–22. DOI: 10.4021/wjon389w
  26. Pazionis T.J.C., Papanastassiou I.D., Maybody M. et al. Embolization of hypervascular bone metastases reduces intraoperative blood loss: a case-control study. Clin Orthop Relat Res. 2014; 472 (10): 3179–87. DOI: 10.1007/s11999-014-3734-3
  27. Kickuth R., Waldherr C., Hoppe H. et al. Interventional management of hypervascular osseous metastasis: role of embolotherapy before orthopedic tumor resection and bone stabilization. AJR Am J Roentgenol. 2008; 191 (6): W240–247. DOI: 10.2214/AJR.07.4037
  28. Kwon J.H., Shin J.H., Kim J.-H. et al. Preoperative transcatheter arterial embolization of hypervascular metastatic tumors of long bones. Acta Radiol. 2010; 51 (4): 396–401. DOI: 10.3109/02841851003660081
  29. Angelini A., Trovarelli G., Berizzi A. et al. Treatment of pathologic fractures of the proximal femur. Injury. 2018; 49 (Suppl 3): S77–S83. DOI: 10.1016/j.injury.2018.09.044
  30. Mohakud S., Tripathy S., Deep Bag N. et al. Multidisciplinary management of solitary hypervascular metastatic recurrence of renal cell carcinoma presenting with pathological femoral fracture. BMJ Case Rep. 2021; 14 (11): e245422. DOI: 10.1136/bcr-2021-245422
  31. Vickers T.A., Crooke S.T. The rates of the major steps in the molecular mechanism of RNase H1-dependent antisense oligonucleotide induced degradation of RNA. Nucleic Acids Res. 2015; 43 (18): 8955–63. DOI: 10.1093/nar/gkv920
  32. Liang X.H., Sun H., Nichols J.G. et al. RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus. Mol Ther. 2017; 25 (9): 2075–92. DOI: 10.1016/j.ymthe.2017.06.002
  33. Graham M.J., Lemonidis K.M., Whipple C.P. et al. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J Lipid Res. 2007; 48 (4): 763–7. DOI: 10.1194/jlr.C600025-JLR200
  34. Gupta N., Fisker N., Asselin M.C. et al. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One. 2010; 5 (5): e10682. DOI: 10.1371/journal.pone.0010682
  35. Lindholm M.W., Elmén J., Fisker N. et al. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. Mol Ther. 2012; 20 (2): 376–81. DOI: 10.1038/mt.2011.260
  36. van Poelgeest E.P., Hodges M.R., Moerland M. et al. Antisense-mediated reduction of proprotein convertase subtilisin/kexin type 9 (PCSK9): a first-in-human randomized, placebo-controlled trial. Br J Clin Pharmacol. 2015; 80 (6): 1350–61. DOI: 10.1111/bcp.12738
  37. van Poelgeest E.P., Swart R.M., Betjes M.G. et al. Acute kidney injury during therapy with an antisense oligonucleotide directed against PCSK9. Am J Kidney Dis. 2013; 62 (4): 796–800. DOI: 10.1053/j.ajkd.2013.02.359
  38. Yamamoto T., Harada-Shiba M., Nakatani M. et al. Cholesterol-lowering Action of BNA-based Antisense Oligonucleotides Targeting PCSK9 in Atherogenic Diet-induced Hypercholesterolemic Mice. Mol Ther Nucleic Acids. 2012; 1 (5): e22. DOI: 10.1038/mtna.2012.16
  39. Wierzbicki A.S., Viljoen A. Anti-sense oligonucleotide therapies for the treatment of hyperlipidaemia. Exp Opin Biol Ther. 2016; 16 (9): 1125–34. DOI: 10.1080/14712598.2016.1196182
  40. Nordestgaard B.G., Nicholls S.J., Langsted A. et al. Advances in lipid-lowering therapy through gene-silencing technologies. Nat Rev Cardiol. 2018; 15 (5): 261–72. DOI: 10.1038/nrcardio.2018.3
  41. Nobel Prizes 2006/ URL: http://www.nobelprize.org/nobel_prizes/medicine/laureates/2006/adv.html (Available at: 10.11.2020)
  42. Fire A., Xu S., Montgomery M.K. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998; 391 (6669): 806–11. DOI: 10.1038/35888
  43. Carthew R.W., Sontheimer E.J. Origins and Mechanisms of miRNAs and siRNAs. Cell. 2009; 136 (4): 642–55. DOI: 10.1016/j.cell.2009.01.035
  44. Bernards R. Exploring the uses of RNAi--gene knockdown and the Nobel Prize. N Engl J Med. 2006; 355 (23): 2391–3. DOI: 10.1056/NEJMp068242
  45. Fitzgerald K., Frank-Kamenetsky M., Shulga-Morskaya S. et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet. 2014; 383 (9911): 60–8. DOI: 10.1016/S0140-6736(13)61914-5
  46. Nair J.K., Willoughby J.L., Chan A. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014; 136 (49): 16958–61. DOI: 10.1021/ja505986a
  47. Khvorova A. Oligonucleotide Therapeutics - A New Class of Cholesterol-Lowering Drugs. N Engl J Med. 2017; 376 (1): 4–7. DOI: 10.1056/NEJMp1614154
  48. Ray K.K., Landmesser U., Leiter L.A. et al. Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol. N Engl J Med. 2017; 376 (15): 1430–40. DOI: 10.1056/NEJMoa1615758
  49. Ray K.K., Stoekenbroek R.M., Kallend D. et al. Effect of an siRNA Therapeutic Targeting PCSK9 on Atherogenic Lipoproteins: Prespecified Secondary End Points in ORION 1. Circulation. 2018; 138 (13): 1304–16. DOI: 10.1161/CIRCULATIONAHA.118.034710