Organizational and management solutions to control the spread of COVID-19

DOI: https://doi.org/10.29296/25877305-2021-07-01
Download full text PDF
Issue: 
7
Year: 
2021

A. Trunin(1); I. Chudinov(3); V. Lebedeva(1); D. Aleshina(1); A. Ilina(1); Ya. Shirobokov(2);
A. Melerzanov(1, 3), Candidate of Medical Sciences (1)Moscow Institute of Physics and Technology (National
Research University), Dolgoprudnyi (2)Samara State Medical University, Ministry of Health of Russia (3)N.A.
Semashko National Research Institute of Public Health, Moscow

The progressive spread of the COVID-19 pandemic has required the urgent development of temporary clinical recommendations for the treatment of patients, as well as algorithms for hospitalization, and protocols for laboratory and clinical examinations. In addition, the important health care tasks are to implement organizational measures aimed at mitigating the spread of the infection, such as the introduction of quarantine measures, a mask regime, vaccination, and the standardization of testing methods for coronavirus infection. The purpose of this review is to consider the existing methods and algorithms for the implementation of the above measures. The paper considers the temporary clinical recommendations of the Ministry of Health of Russia for the prevention, containment, diagnosis, and treatment of the novel coronavirus infection, as well as the published studies of testing methods for COVID-19, the results of clinical trials of drugs used in its treatment, and independent reviews of some of the currently presented vaccines. Based on the described methods and approaches, conclusions are drawn about the inconsistency of the effectiveness of various treatment approaches, hospitalization algorithms, and organizational measures.

Keywords: 
infectious diseases
health care organization
SARS-CoV-2
vaccination
quarantine
mask regime
hospitalization algorithms
medications
testing for COVID-19



It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Cowling B.J. et al. Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study. Lancet Public Health. 2020; 5: 279–88. DOI: 10.1101/2020.03.12.20034660
  2. Ghosh A., Nundy S., Mallick T.K. How India is dealing with COVID-19 pandemic. Sensors International. 2020; 1: 100021. DOI: 10.1016/j.sintl.2020.100021
  3. India under COVID-19 lockdown. Lancet. 2020; 395 (10233): 1315. doi: 10.1016/S0140-6736(20)30938-7. URL: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30938-7/fulltext
  4. Meunier T.A.J. Full lockdown policies in Western Europe countries have no evident impacts on the COVID-19 epidemic. MedRxiv. 2020. DOI: 10.1101/2020.04.24.20078717
  5. Xiao Y., Torok M.E. Taking the right measures to control COVID-19. Lancet Infect Dis. 2020; 5: 523–24. DOI: 10.1016/s1473-3099(20)30152-3. URL: https://www.thelancet.com/article/S1473-3099(20)30152-3/fulltext
  6. Howard J. et al. An evidence review of face masks against COVID-19. Proc Nat Acad Sci. 2021; 118 (4). e2014564118. DOI: 10.1073/pnas.2014564118.
  7. Borisevich S.V., Sizikova T.E., Lebedev V.N. Pandemija COVID-19: analiz vozmozhnyh stsenariev razvitija epidemii zabolevanija v Rossii. Vestnik vojsk RHB zaschity. 2020; 4 (2): 116–30 [Borisevich S.V., Sizikova T.E., Lebedev V.N. COVID-19 Pandemic: Analysis of Possible Scenarios for the Development of the Epidemic in Russia. Journal of NBC Protection Corps. 2020; 4 (2): 116–30 (in Russ)]. DOI: 10.35825/2587-5728-2020-4-2-116-130
  8. Matveev A.V. Matematicheskoe modelirovanie otsenki effektivnosti mer protiv rasprostranenija epidemii COVID-19. Natsional'naja bezopasnost' i strategicheskoe planirovanie. 2020; 1: 23–39 [Matveev A.V. The mathematical modeling of the effective measures against the COVID-19 spread. National Security and Strategic Planning. 2020; 1: 23–39 [(in Russ)]. DOI: 10.37468/2307-1400-2020-1-23-39
  9. Primenenie masok v uslovijah COVID-19. Vremennye rekomendatsii vsemirnoj organizatsii zdravoohranenija [Interim recommendations of the World Health Organization (in Russ)]. URL https://apps.who.int/iris/bitstream/handle/10665/337199/WHO-2019-nCov-IPC_Masks-2020.5-rus.pdf
  10. Sickbert-Bennett E.E. et al. Filtration efficiency of hospital face mask alternatives available for use during the COVID-19 pandemic. JAMA Intern Med. 2020; 180 (12): 1607–12. DOI: 10.1001/jamainternmed.2020.4221
  11. Vremennye metodicheskie rekomendatsii. Profilaktika, diagnostika i lechenie novoj koronavirusnoj infektsii (COVID-19) Ministerstva zdravoohranenija Rossijskoj Federatsii (Versija 10) [Temporary Guidelines. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19) of the Ministry of Health of the Russian Federation (Version 10) (in Russ)]. URL: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/588/original/Vremennye_MR_COVID-19_%28v.10%29-08.02.2021_%281%29.pdf
  12. Antsiferov M.B. i dr. Klinicheskij protokol lechenija bol'nyh novoj koronavirusnoj infektsiej COVID-19. Pod red. A.I. Hripuna M.: GBU «NIIOZMM DZM; 2020. [Antsiferov M.B. et al. Clinical protocol for the treatment of patients with new coronavirus infection Covid-19. Ed. A.I. Khripun. M.: GBU NIIOZMM DZM, 2020 [(in Russ)].
  13. Gajsenok O.V. Primenenie ingibitorov virusnyh RNK-polimeraz v sochetanii s ingibitorom fuzii v lechenii patsientov s COVID-19: gipoteza. Voprosy virusologii. 2020; 65 (3): 167–75 [Gaisenok O.V. The use of viral RNA polymerase inhibitors in combination with a fusion inhibitor in the treatment of patients with COVID-19: hypothesis. Problems of Virology. 2020; 65 (3): 167–75 (in Russ)]. DOI: 10.36233/0507-4088-2020-65-3-167-175
  14. Kozlov V.A., Savchenko A.A., Kudrjavtsev I.V. i dr. Klinicheskaja immunologija. Krasnojarsk: Polikor, 2020; 386 s. [Kozlov V.A., Savchenko A.A., Kudryavtsev I.V. et al. Klinicheskaya immunologiya. Krasnoyarsk: Polikor, 2020; 386 s. (in Russ.)]. DOI: 10.17513/np.438
  15. Coomes E.A., Haghbayan H. Favipiravir, an antiviral for COVID-19? J Antimicrob Chemother. 2020; 75 (7): 2013–4. DOI: 10.1093/jac/dkaa171
  16. Ghasemnejad-Berenji M., Pashapour S. Favipiravir and COVID-19: a simplified summary. Drug Res (Stuttg). 2021; 71 (3): 166–70. DOI: 10.1055/a-1296-7935
  17. Udwadia Z. F. et al. Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: A randomized, comparative, open-label, multicenter, phase 3 clinical trial. Int J Infect Dis. 2021; 103: 62–71. DOI: 10.1016/j.ijid.2020.11.142
  18. Sinha N., Balayla G. Hydroxychloroquine and COVID-19. Postgrad Med. 2020; 96 (1139): 550–5. DOI: 10.1136/postgradmedj-2020-137785
  19. Meo S.A., Klonoff D.C., Akram J. Efficacy of chloroquine and hydroxychloroquine in the treatment of COVID-19. Eur Rev Med Pharmacol Sci. 2020; 24 (8): 4539–47. DOI: 10.26355/eurrev_202004_21038
  20. Boulware D.R. et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for COVID-19. N Engl J Med. 2020; 383 (6): 517–25. DOI: 10.1056/NEJMoa2016638
  21. Protokol lechenija COVID-19 meditsinskogo tsentra MGU [The protocol of treatment of COVID-19 of the MSU medical center (in Russ)]. URL: http://www.mc.msu.ru/protokol-mnoc.pdf
  22. Mareev V.Ju. i dr. PUl's-Terapija steroidnymi gormoNamI bol'nyh s Koronavirusnoj pnevmoniej (COVID-19), sistemnym vospaleniem i riskom venoznyh trombozov i tromboembolij (issledovanie PUTNIK). Kardiologija. 2020; 60 (6): 15–29 [Mareev V.Yu. et al. Steroid pulse-therapy in patients With coronAvirus Pneumonia (COVID-19), sYstemic inFlammation And Risk of vEnous thRombosis and thromboembolism (WAYFARER Study). Kardiologiia. 2020; 60 (6): 15–29 (in Russ)]. DOI: 10.18087/cardio.2020.6.n1226
  23. Erensoy S. SARS-CoV-2 and Microbiological Diagnostic Dynamics in COVID-19 Pandemic. Mikrobiyol bul. 2020; 54 (3): 497–509. DOI: 10.5578/mb.69839
  24. Zitek T. The appropriate use of testing for COVID-19. West J Emerg Med. 2020; 21 (3): 470. DOI: 10.5811/westjem.2020.4.47370
  25. Cheng M.P. et al. Diagnostic testing for severe acute respiratory syndrome–related coronavirus 2: a narrative review. Ann Intern Med. 2020; 172 (11): 726–34. DOI: 10.7326/M20-1301
  26. Chau C.H., Strope J.D., Figg W.D. COVID-19 Clinical Diagnostics and Testing Technology. Pharmacotherapy. 2020; 40 (8): 857–68. DOI: 10.1002/phar.2439
  27. Deeks J.J. et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev. 2020; 6: CD013652. DOI: 10.1002/14651858.CD013652
  28. Tregoning J.S. et al. Vaccines for COVID-19. Clin Exp Immunol. 2020; 202 (2): 162–92. DOI: 10.1111/cei.13517
  29. Chung J.Y., Thone M.N., Kwon Y.J. COVID-19 vaccines: The status and perspectives in delivery points of view. Adv Drug Deliv Rev. 2021; 170: 1–25. DOI: 10.1016/j.addr.2020.12.011
  30. Gudima G.O., Haitov R.M., Kudlaj D.A. i dr. Molekuljarno-immunologicheskie aspekty diagnostiki, profilaktiki i lechenija koronavirusnoj infektsii. Immunologija. 2021; 42 (3): 198–210 [Gudima G.O., Khaitov R.M., Kudlay D.A. et al. Molecular immunological aspects of diagnostics, prevention and treatment of coronavirus infection. Immunologiya. 2021; 42 (3): 198–210 (in Russ.)]. DOI: 10.33029/0206-4952-2021-42-3-198-210
  31. Korber B. et al. Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020; 182 (4): 812–27. DOI: 10.1016/j.cell.2020.06.043
  32. Yu H.Q., Sun B.Q., Fang Z.F. et al. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients. Eur Respir J. 2020; 56 (2): 2001526. DOI: 10.1183/13993003.01526-2020
  33. Weissman D. et al. D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe. 2021; 29 (1): 23–31. DOI: 10.1016/j.chom.2020.11.012