Download full text PDF

S. Bulgakova, MD; E. Treneva, Candidate of Medical Sciences; Professor N. Zakharova, MD; A. Nikolaeva, Candidate of Medical Sciences Samara state medical University, Samara

The aging process affects the structure and function of various organs and systems. The adrenal glands are also subject to age-related changes. Questions: hormones and aging, what is primary and what is secondary, where is the cause, and where is the consequence – scientists have been worried for a long time. The lack of answers to these questions makes it relevant to study age-related changes in the adrenal glands and their impact on the work of various organs and systems Purpose: to study the effect of age-related changes in the adrenal glands on the work of various organs and systems. Materials and methods: analysis of literature data on search words - aging, hormones, endocrine system, old age, senile age, adrenal glands, hypothalamus, pituitary gland glucocorticoids, dehydroepiandrosterone for 2000–2019 in computer databases: PubMed, Scopus, Medical-Science, Elibrary, Web of Science, Ceeol. Results. Normal aging leads to changes in the activity of the axis of the hypothalamus-pituitary-adrenal gland (HPA) and the production of adrenal hormones. Significant is an increase in the average daily levels of cortisol in the serum of older people with changes in the circadian secretion rhythm. Excess glucocorticoids in the elderly can affect the structural integrity and function of various areas of the brain, associated with muscle loss, hypertension, osteopenia, visceral obesity, and diabetes mellitus. In contrast, levels of other adrenal cortical hormones (aldosterone, dehydroepiandrosterone) in the elderly have been proven to be reduced. The main mechanisms for their reduction remain unclear. Catecholamine secretion is also subject to age-related changes. Conclusion. In the process of aging, numerous structural and functional changes in the adrenal glands occur, which affects the functioning of many organs and systems.

adrenal glands
pituitary gland

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

  1. Yiallouris A., Tsioutis C., Agapidaki E. et al. Adrenal aging and its implications on stress responsiveness in humans. Front Endocrinol (Lausanne). 2019; 10: 54–64. DOI: 10.3389/fendo.2019.00054
  2. Vinson G.P. Functional zonation of the adult mammalian adrenal cortex. Front Neurosci. 2016; 10: 238–47. DOI: 10.3389/fnins.2016.00238
  3. Goncharova N.D., Marenin V.Y., Oganyan T.E. Aging of the hypothalamic-pituitary-adrenal axis in nonhuman primates with depression-like and aggressive behavior. Aging. 2010; 2: 854–66. DOI: 10.18632/aging.100227
  4. Jones C.M., Boelaert K. The endocrinology of aging: a mini-review. Gerontology. 2015; 61 (4): 291–300. DOI: 10.1159/000367692
  5. van den Beld A.W., Kaufman J.-M., Zillikens M.C. et al. The physiology of endocrine systems with aging. Lancet Diabetes Endocrinol. 2018; 6: 647–58. DOI: 10.1016/S2213-8587(18)30026-3
  6. Dijckmans B., Tortosa-Martinez J., Caus N. et al. Does the diurnal cycle of cortisol explain the relationship between physical performance and cognitive function in older adults? Eur Rev Aging Phys Act. 2017; 14: 6–14. DOI: 10.1186/s11556-017-0175-5
  7. Flatt T. A new definition of aging? Front Genet. 2012; 3: 148–56. DOI: 10.3389/fgene.2012.00148
  8. Gaffey A.E., Bergeman C.S., Clark L.A. et al. Aging and the HPA axis: stress and resilience in older adults. Neurosci Biobehav Rev. 2016; 68: 928–45. DOI: 10.1016/j.neubiorev.2016.05.036
  9. Ennis G.E., An Y., Resnick S.M. et al. Long-term cortisol measures predict Alzheimer disease risk. Neurology. 2017; 88: 371–8. DOI: 10.1212/WNL.0000000000003537
  10. Schoorlemmer R.M.M., Peeters G.M.E., van Schoor N.M. et al. Relationships between cortisol level, mortality and chronic diseases in older persons. Clin Endocrinol. 2009; 71: 779–86. DOI: 10.1111/j.1365-2265.2009.03552.x
  11. Bulgakova S. V., Romanchuk N. P. Polovye gormony i kognitivnye funktsii: sovremennye dannye. Bjulleten' nauki i praktiki. 2020; 6 (3): 69–95 [Bulgakova S., Romanchuk R. Sex Hormones and Cognitive Functions: Current Data. Bulletin of Science and Practice. 2020; 6 (3): 69–95 (in Russ.)]. DOI: 10.33619/2414-2948/52/09
  12. Ohlsson C., Vandenput L., Tivesten A. DHEA and mortality: what is the nature of the association? J Steroid Biochem Mol Biol. 2015; 145: 248–53. DOI: 10.1016/j.jsbmb.2014.03.006
  13. Nanba K., Vaidya A., Rainey W.E. Aging and adrenal aldosterone production. Hypertension. 2018; 71: 218–23. DOI: 10.1161/HYPERTENSIONAHA.117.10391
  14. Seals D.R., Esler M.D. Human ageing and the sympathoadrenal system. J Physiol. 2000; 528: 407–17. DOI: 10.1111/j.1469-7793.2000.00407.x
  15. Esler M., Lambert G., Kaye D. et al. Influence of ageing on the sympathetic nervous system and adrenal medulla at rest and during stress. Biogerontology. 2002; 3: 45–9. DOI: 10.1023/a:1015203328878
  16. Fielding R.A., Vellas B., Evans W.J. et al. Sarcopenia: an undiagnosed condition in older adults. current consensus definition: prevalence, etiology, and consequences. international working group on sarcopenia. J Am Med Dir Assoc. 2011; 12: 249–56. DOI: 10.1016/j.jamda.2011.01.003
  17. Ferrucci L., Baroni M., Ranchelli A. et al. Interaction between bone and muscle in older persons with mobility limitations. Curr Pharm Des. 2014; 20: 3178–97. DOI: 10.2174/13816128113196660690
  18. Bulgakova S.V., Romanchuk P.I., Treneva E.V. Insulin, golovnoj mozg, bolezn' Al'tsgejmera: novye dannye. Bjulleten' nauki i praktiki. 2020; 6 (3): 96–126 [Bulgakova S., Romanchuk P., Treneva E. Insulin, Brain, Alzheimer’s Disease: New Evidence. Bulletin of Science and Practice. 2020; 6 (3): 96–126 (in Russ.)]. DOI: 10.33619/2414-2948/52/10
  19. Hackett R.A., Steptoe A., Kumari M. Association of diurnal patterns in salivary cortisol with type 2 diabetes in the Whitehall II study. J Clin Endocrinol Metab. 2014; 99: 4625–31. DOI: 10.1210/jc.2014-2459
  20. Buford T.W., Willoughby D.S. Impact of DHEA(S) and cortisol on immune function in aging: a brief review. Appl Physiol Nutr Metab. 2008; 33: 429–33. DOI: 10.1139/H08-013
  21. Vitlic A., Lord J.M., Phillips A.C. Stress, aging and their influence on functional, cellular and molecular aspects of the immune system. AGE. 2014; 36: 9631–41. DOI: 10.1007/s11357-014-9631-6
  22. Scott S.B., Graham-Engeland J.E., Engeland C.G. et al. The effects of stress on cognitive aging, physiology and emotion (ESCAPE) project. BMC Psychiatry. 2015; 15: 146–9. DOI: 10.1186/s12888-015-0497-7
  23. Piazza J.R., Charles S.T., Sliwinski M.J. et al. Affective reactivity to daily stressors and long-term risk of reporting a chronic physical health condition. Ann Behav Med. 2013; 45: 110–20. DOI: 10.1007/s12160-012-9423-0
  24. Evans P.D., Fredhoi C., Loveday C. et al. The diurnal cortisol cycle and cognitive performance in the healthy old. Int J Psychophysiol. 2011; 79: 371–7. DOI: 10.1016/j.ijpsycho.2010.12.006
  25. Karlamangla A.S., Friedman E.M., Seeman TE et al. Daytime trajectories of cortisol: demographic and socioeconomic differences–findings from the National Study of Daily Experiences. Psychoneuroendocrinology. 2013; 38: 2585–97. DOI: 10.1016/j.psyneuen.2013.06.010
  26. Vreeburg S.A., Hoogendijk W.J.G., van Pelt J. et al. Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: results from a large cohort study. Arch Gen Psychiatry. 2009; 66: 617–26. DOI: 10.1001/archgenpsychiatry.2009.50
  27. Ong A.D., Fuller-Rowell T.E., Bonanno G.A. et al. Spousal loss predicts alterations in diurnal cortisol activity through prospective changes in positive emotion. Health Psychol. 2011; 30: 220–7. DOI: 10.1037/a0022262