Хромосомные аномалии. Роль цитогенетического исследования на этапе пренатальной диагностики

DOI: https://doi.org/10.29296/25877305-2019-11-02
Скачать статью в PDF
Номер журнала: 
11
Год издания: 
2019

В. Морозова(1), кандидат химических наук, А. Асеева(1), кандидат медицинских наук, Е. Домрачева(1), доктор медицинских наук, профессор, О. Гизингер(1, 2), доктор биологических наук, профессор, Т. Силкина(1) 1-ООО «Лаборатория “Гемотест”», Москва 2-Российский университет дружбы народов, Москва E-mail: OGizinger@gmail.com

Хромосомные аномалии, связанные с изменением числа и структуры хромосом в кариотипе человека, чрезвычайно разнообразны. Трудности пренатальной диагностики заключаются в том, что очень многие наследственные аномалии передаются детям от фенотипически совершенно нормальных родителей – носителей той или иной хромосомной аномалии. Описаны виды хромосомных аномалий, которые приводят к бесплодию, невынашиванию беременности и рождению детей с пороками развития. Возможности современной лаборатории позволяют определить степень и глубину поражения, оценить прогноз рождения здорового ребенка, опасность данной патологии и дать шанс паре иметь здорового ребенка с помощью предимплантационного генетического скрининга и выбора здоровых эмбрионов для имплантации при проведении процедуры экстракорпорального оплодотворения.

Ключевые слова: 
генетика
хромосомные аномалии
цитогенетическое исследование
анализ кариотипа
невынашивание беременности

Для цитирования
Морозова В., Асеева А., Домрачева Е., Гизингер О., Силкина Т. Хромосомные аномалии. Роль цитогенетического исследования на этапе пренатальной диагностики . Врач, 2019; (11): 9-15 https://doi.org/10.29296/25877305-2019-11-02


It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

Список литературы: 
  1. Lejueune J., Gautier M, Turpin R. Etudes des chromosome somatiques de neuf enfants mongoliens // C.R. Acad Sci Paris. – 1959; 248: 1721–2.
  2. Jacobs P., Bikie A., Court-Brown W. et al. The somatic chromosomes in mongolism // Lancet. – 1959; 1: 710. DOI: 10.1016/s0140-6736(59)91892-6.
  3. Ford C., Jones K., Polani P. et al. A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner’s syndrome) // Lancet. – 1959; 1: 711–3. DOI: 10.1016/s0140-6736(59)91893-8.
  4. Jacobs P., Strong J. A case of human intersexuality having a possible XXY sex-determining mechanism // Nature. – 1959; 183: 302–3. DOI: 10.1038/183302a0.
  5. Hassold T., Hunt P. To err (meiotically) is human: the genesis of human aneuploidy // Nat. Rev. Genet. – 2001; 2: 280–91. DOI: 10.1038/35066065.
  6. Jacobs P. Epidemiology of chromosome abnormalities in man // Am. J. Epidemiol. – 1977; 105 (3): 180–91.
  7. Hassold T., Abruzzo M., Adkins K. et al. Human aneuploidy: incidence, origin and etiology // Environ. Mol. Mutagen. – 1996; 28: 167–75. DOI: 10.1002/(SICI)1098-2280(1996)28:33.0.CO;2-B.
  8. Bondy C. Care of girls and women with Turner syndrome: a guideline of the Turner syndrome study group // J. Clin. Endo Metab. – 2007; 92 (1): 10–25. DOI: 10.1210/jc.2006-1374.
  9. Benn P., Hsu L.. Prenatal diagnosis of chromosomal abnormalities through amniocentesis. In: Milunsky A, ed. Genetic Disorders of the Fetus; Diagnosis, Prevention, and Treatment / Baltimore: Johns Hop kins University Press, 2004; 247–9.
  10. Oliver T., Bhise A., Feingold E. et al. Investigation of factors associated with paternal nondisjunction of chromosome 21 // Am. J. Med. Genet. – 2009; 149A: 1685–90. DOI: 10.1002/ajmg.a.32942.
  11. Warren W., Gorringe K. A molecular model for sporadic human aneuploidy // Trends in Genet. – 2006; 22 (4): 218–24.
  12. Pacchierotti F., Adler I.-D., Eichenlaub-Ritter U. et al. Gender effects on the incidence of aneuploidy in mammalian germ cells // Environ. Res. – 2007; 104: 46–69. DOI: 10.1016/j.envres.2006.12.001.
  13. Chen M., Jiang F., Guo Y. et al. Validation of fetal DNA fraction estimation and its application in noninvasive prenatal testing for aneuploidy detection in multiple pregnancies // Prenat. Diagn. – 2019 Oct 31. DOI: 10.1002/pd.5597.
  14. Njeru S., Kraus J., Meena J. et al. Aneuploidy-inducing gene knockdowns overlap with cancer mutations and identify Orp3 as a B-cell lymphoma suppressor // Oncogene. – 2019 Oct 28. DOI: 10.1038/s41388-019-1073-2.
  15. Neuber M., Rehder H., Zuther C. et al. Polyploidies in abortion material decrease with maternal age // Hum. Genet. – 1993; 91: 563–6.
  16. Berger V., Norton M., Sparks T. et al. The utility of nuchal translucency ultrasound in identifying rare chromosomal abnormalities not detectable by cell-free DNA screening // Prenat. Diagn. – 2019 Oct 25. DOI: 10.1002/pd.5583.
  17. Book J., Santesson B. Malformation syndrome in man associated with triploidy (69 chromosomes) // Lancet. – 1960; 1: 858–9. DOI: 10.1016/s0140-6736(60)90737-6.
  18. Gardner R., Sutherland G. Variant chromosomes and abnormalities of no phenotypic consequence. In: Motulsky A.G., Bobrow M., Harper P.S., Scriver C., Epstein C.J., Hall J., eds. Chromosome Abnormalities and Genetic Counseling / New York: Oxford University Press, 2004; 222–46.
  19. Gardner R., Sutherland G. Variant chromosomes and abnormalities of no phenotypic consequence. In: Motulsky A.G., Bobrow M., Harper P.S., Scriver C., Epstein C.J., Hall J., eds. Chromosome Abnormalities and Genetic Counseling / New York: Oxford University Press, 2004; 243–4.
  20. Yatsenko S., Brundage E., Roney E. et al. Molecular mechanisms for subtelomeric rearrangements associated with the 9q34.3 microdeletion syndrome // Hum. Mol. Genet. – 2009; 18 (11): 1924–36. DOI: 10.1093/hmg/ddp114.
  21. Gardner R., Sutherland G. Inversions. In: Motulsky A.G., Bobrow M., Harper P.S., Scriver C., Epstein C.J., Hall J., eds. Chromosome Abnormalities and Genetic Counseling / New York: Oxford University Press, 2004; 144.
  22. Smith A., Spuhler K., Williams T. et al. Genetic risk for recombinant 8 syndrome and the transmission rate of balanced inversion 8 in the Hispanic population of the southwestern United States // Am. J. Hum. Genet. – 1987; 41: 1083–103.
  23. Madan K., Pieters M., Kuyt L. et al. Paracentric inversion inv(11)(q21q23) in The Netherlands // Hum. Genet. – 1990; 85: 15–20.
  24. Oldenburg J., El-Maarri O. New insight into the molecular basis of hemophilia A // Int. J. Hematol. – 2006; 83: 96–102. DOI: 10.1532/IJH97.06012.
  25. Bunge S., Rathmann M., Steglich C. et al. Homologous nonallelic recombination between the iduronate-sulfatase gene and pseudogene cause various intragenic deletions and inversions in patients with mucopolysaccharidosis type II // Eur. J. Hum. Genet. – 1998; 6: 492–500. DOI: 10.1038/sj.ejhg.5200213.
  26. Earle E., Shaffer L., Klitsis P. et al. Identification of DNA sequences flanking the breakpoint of human t(14q21q) Robertsonian translocations // Am. J. Hum. Genet. – 1992; 50: 717–24.
  27. Lemyre E., Der Kaloustian V., Duncan A. Stable non-Robertsonian dicentric chromosomes: four new cases and review // J. Med. Genet. – 2001; 38: 76–9.
  28. Wolff D., Miller A., VanDyke D. et al. Molecular definition of breakpoints associated with human Xq isochromosomes: implication for mechanisms of formation // Am. J. Hum. Genet. – 1996; 58: 154–60.
  29. Schwartz S., Depinet T. Studies of “acentric” and “dicentric” marker chromosomes: implications for definition of the functional centromere // Am. J. Hum. Genet. Suppl. – 1996; 59 (4): A14.
  30. Fioretos T., Strombeck B., Sandberg T. et al. Isochromosome 17q in blast crisis of chronic myeloid leukemia and other hematologic malignancies is the result of clustered breakpoints in 17p11 and is not associated with coding TP53 mutations // Blood. – 1999; 94: 225–32.
  31. Kovaleva N. Nonmosaic balanced homologous translocations of major clinical significance: some may be mosaic // Am. J. Med. Genet. – 2007; 143A: 2843–50. DOI: 10.1002/ajmg.a.31745.
  32. Baumer A., Basaran S., Taralczak M. et al. Initial maternal meiotic I error leading to the formation of a maternal i(2q) and a paternal i(2p) in a healthy male // Cytogenet. Genome Res. – 2007; 118 (1): 38–41. DOI: 10.1159/000106439.
  33. Bugge M., deLozier-Blanchet C., Bak M. et al. Trisomy 13 due to rea (13q;13q) is caused by i(13) and not rob(13;13)(q10;q10) in the majority of cases // Am. J. Med. Genet. – 2005; 132A: 310–3. https://doi.org/10.1002/ajmg.a.30474.
  34. Wyandt H. Ring autosomes: identification, familial transmission, causes of phenotypic effects and in vitro mosaicism. In: Daniel A., ed. The Cytogenetics of Mammalian Autosomal Rearrangements / New York: Alan R. Liss, Inc., 1988; 667–96.
  35. McGinniss M., Kazazian H. Jr., Stetten G. et al. Mechanisms of ring chromosome formation in 11 cases of human ring chromosome 21 // Am. J. Hum. Genet. – 1992; 50 (1): 15–28.
  36. Muroya K., Yamamoto K., Fukushima Y. et al. Ring chromosome 21 in a boy and a derivative chromosome 21 in the mother: implication for ring chromosome formation // Am. J. Med. Genet. – 2002; 110: 332–7. DOI: 10.1002/ajmg.10466.
  37. Cote G., Katsantoni A., Deligeorgis D. The cytogenetic and clinical implications of a ring chromosome 2 // Ann. Genet. – 1981; 24: 231–5.
  38. Shaffer L., Slovak M., Campbell L. An International System for Human Cytogenetic Nomenclature (2009) / Basel: S. Karger, 2009.
  39. Liehr T., Weise A. Frequency of small supernumerary marker chromosomes in prenatal, newborn, developmentally retarded and infertility diagnostics // International J. Mol. Med. – 2007; 19: 719–31.
  40. Crolla J., Youings S., Ennis S. et al. Supernumerary marker chromosomes in man: parental origin, mosaicism and maternal age revisited // Eur. J. Hum. Genet. – 2005; 13: 154–60. DOI: 10.1038/sj.ejhg.5201311.
  41. Youings S., Ellis K., Ennis S. et al. A study of reciprocal translocations and inversion detected by light microscopy with special reference to origin, segregation, and recurrent abnormalities // Am. J. Med. Genet. – 2004; 126A: 46–60. DOI: 10.1002/ajmg.a.20553.
  42. Warburton D. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints // Am. J. Hum. Genet. – 1991; 49: 995–1013.
  43. Giglio S., Calvari V., Gregato G. et al. Heterozygous submicroscopic inversions involving olfactory receptor-gene clusters mediate the recurrent t(4;8)(p16;p23) translocation // Am. J. Hum. Genet. – 2002; 71: 276–85. DOI: 10.1086/341610.
  44. Chen C.-P., Lin S.-P., Chern S.-R. et al. Molecular cytogenetic analysis of de novo parital monosomy 4p (4p16.2 → pter) and partial trisomy 8p (9p23.2 → pter) // Genet. Counsel. – 2006; 17 (1): 81–5.
  45. Gardner R., Sutherland G. Robertsonian translocations. In: Motulsky A.G., Bobrow M., Harper P.S., Scriver C., Epstein C.J., Hall J., eds. Chromosome Abnormalities and Genetic Counseling / New York: Oxford University Press, 2004; 122–37.
  46. Baptista J., Mercer C., Prigmore E. et al. Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort // Am. J. Hum. Genet. – 2008; 82: 927–36. DOI: 10.1016/j.ajhg.2008.02.012.
  47. Kloosterman W., Tavakoli-Yaraki M., van Roosmalen M. et al. Constitutional chromothripsis rearrangements involve clustered double stranded DNA breaks and nonhomologous repair mechanisms // Cell Rep. – 2012; 1 (6): 648–55. DOI: 10.1016/j.celrep.2012.05.009.
  48. Sun H., Yi T., Hao X. et al. The contribution of single-gene defects to congenital cardiac left-sided lesions in the prenatal setting // Ultrasound Obstet. Gynecol. – 2019 Oct 21. DOI: 10.1002/uog.21883.