Identifying genomic variations in metabolic syndrome as a research strategy

DOI: https://doi.org/10.29296/25877305-2024-08-02
Issue: 
8
Year: 
2024

Professor L. Khidirova(1, 2), MD; M. Bolshakova(1, 2)
1-Novosibirsk State Medical University, Ministry of Health of Russia
2-Novosibirsk Regional Clinical Cardiological Dispensary

A review of modern Russian and foreign literature devoted to the genetic determinants of metabolic syndrome, mainly in young men, was carried out. When searching for information, the RSCI, Best Evidence, PubMed, Clinical Evidence, and Cochrane Library databases were used. It has been determined that the clinical manifestations of metabolic syndrome in young people are caused by complex intergenic interactions of polymorphisms of a number of genes (FTO, ACE, TCF7L2, ITGA2B, CSK, MTHFR). Among them, the CSK, FTO and TCF7L2 genes play a significant role. Timely identification of genetic predictors of metabolic disorders is of great clinical importance. The long-term consequences of risk factors such as excess body weight, insulin resistance and the resulting hypertension can accumulate exponentially. In this regard, it is necessary to conduct large cohort studies not to study the consequences of metabolic syndrome, but to identify the genetic factors in the formation of this syndrome for the possibility of targeted treatment for this category of people.

Keywords: 
cardiology
metabolic syndrome
obesity
arterial hypertension
insulin resistance
FTO
ACE
TCF7L2
ITGA2B
CSK
MTHFR
TCF7L2
ADIPOQ SLC30 A8
genetic risk scores.



References: 
  1. GBD 2019 employees by risk factors. The global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the 2019 Global Burden of Disease Study. Lancet. 2020; 396 (10258): 1223–49. DOI: 10.1016/s0140-6736(20)30752-2
  2. Okunogbe A., Nugent R., Spencer G. et al. The economic consequences of overweight and obesity. 2nd ed. with scores for 161 countries. World Obesity Federation, 2022. DOI: 10.13140/RG.2.1.3928.9042
  3. WHO. Obesity and overweight. Fact sheet. 311. URL: http://www.who.int/mediacentre/factsheets/fs311/en
  4. Беленков Ю.Н., Чазова И.Е., Мычка В.Б. Многоцентровое рандомизированное открытое исследование по изучению эффективности изменения образа жизни и терапии ингибитором АПФ (квинаприлом) у больных ожирением и артериальной гипертонией (ЭКО). Артериальная гипертония. 2003; 9(6): 196–9 [Belenkov Yu.N., Chazova I.E., Mychka V.B. Multicenter randomized open-label study on the effectiveness of lifestyle changes and therapy with ACE inhibitor (quinapril) in patients with obesity and arterial hypertension (IVF). Arterial hypertension. 2003; 9 (6): 196–9 (in Russ.)]. DOI: 10.18705/1607-419X-2003-9-6-196-198
  5. Whiting D.R., Guariguata L., Weil C. et al. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011; 94 (3): 311–21. DOI: 10.1016/j.diabres.2011.10.029
  6. Чазова И.Е., Мычка В.Б. Открытая, многоцентровая, рандомизированная, научно-практическая программа МИНОТАВР: промежуточный анализ результатов. Кардиоваскулярная терапия и профилактика. 2006; 2: 81–8 [Chazova I.E., Mychka V.B. Open, multi-center randomized research and clinical program MINOTAUROS: intermediate data analysis. Cardiovascular Therapy and Prevention. 2006; 5 (2): 81–8 (in Russ.)].
  7. Kuschnir M.C.C., Bloch K.V., Szklo M. et al. ERICA: prevalence of metabolic syndrome in Brazilian adolescents. Revista de saúde Pública. 2016; 50 (11): 256–68. DOI: 10.1590/s01518-8787.2016050006701
  8. IDF atlas (7th edition update). Brussels, Belgium. International Diabetes Federation, 2015. URL: http://www.diabetesatlas.org
  9. Селиверстов П.В., Гриневич В.Б., Шаповалов В.В. и др. Повышение эффективности скрининга хронических неинфекционных заболеваний с использованием технологий на основе искусственного интеллекта. Лечащий врач. 2024; 27 (4): 97–104 [Seliverstov P.V., Grinevich V.B., Shapovalov V.V. et al. Improving the effectiveness of screening for chronic noncommunicable diseases using artificial intelligence-based technologies. Lechaschi Vrach. 2024; 27 (4): 97–104 (in Russ.)]. DOI: 10.51793/OS.2024.27.4.014
  10. Xiang Y., Zhou W., Duan X. et al. Metabolic Syndrome, and Particularly the Hypertriglyceridemic-Waist Phenotype, Increases Breast Cancer Risk, and Adiponectin Is a Potential Mechanism: A Case-Control Study in Chinese Women. Front Endocrinol (Lausanne). 2020; 10: 905. DOI: 10.3389/fendo.2019.00905
  11. Lee J., Lee K.S., Kim H. et al. The relationship between metabolic syndrome and the incidence of colorectal cancer. Environ Health Prev Med. 2020; 25 (1): 6. DOI: 10.1186/s12199-020-00845-w
  12. Wang Y., Tu R., Yuan H. et al. Associations of unhealthy lifestyles with metabolic syndrome in Chinese rural aged females. Sci Rep. 2020; 10 (1): 2718. DOI: 10.1038/s41598-020-59607-x
  13. Wu L.T., Shen Y.F., Hu L. et al. Prevalence and associated factors of metabolic syndrome in adults: a population-based epidemiological survey in Jiangxi province, China. BMC Public Health. 2020; 20 (1): 133. DOI: 10.1186/s12889-020-8207-x
  14. Hardy D.S., Garvin J.T., Mersha T.B. et al. Ancestry specific associations of FTO gene variant and metabolic syndrome. Medicine (Baltimore). 2020; 99 (6): e18820. DOI: 10.1097/MD.0000000000018820
  15. Livingstone K.M., Celis-Morales C., Papandonatos G.D. et al. FTO genotype and weight loss: systematic review and meta-analysis of 9563 individual participant data from eight randomised controlled trials. BMJ. 2016; 354: i4707. DOI: 10.1136/bmj.i4707
  16. Хабибулина М.М., Шамилов М.Д. Терапия артериальной гипертензии препаратом экватор в зависимости от генотипа гена эстрогеновых рецепторов. Врач. 2023; 34 (8): 68–74 [Khabibulina M.M., Shamilov M.D. Hypertension therapy with Equator according to the genotype of the estrogen receptor gene. Vrach. 2023; 34 (8): 68–74 (in Russ.)]. DOI: 10.29296/25877305-2023-08-13
  17. Хабибулина М. Межгенные взаимодействия в формировании у женщин безболевой ишемии миокарда. Врач. 2015; 9: 44-6 [Khabibulina M.M. Intergenic interactions in the development of silent myocardial ischemia. Vrach. 2015; 9: 44–6 (in Russ.)].
  18. Dang L.C., Samanez-Larkin G.R., Smith C.T. et al. FTO affects food cravings and interactswith age to influence age-related decline in food cravings. Physiol Behav. 2018; 192: 188–93. DOI: 10.1016/j.physbeh.2017.12.013
  19. Дедов И.И., Шестакова М.В., Мельниченко Г.А. и др. Междисциплинарные клинические рекомендации «Лечение ожирения и коморбидных заболеваний». Ожирение и метаболизм. 2021; 18 (10): 5–99 [Dedov I.I., Shestakova M.V., Melnichenko G.A. et al. Interdisciplinary clinical practice guidelines "Management of obesity and its comorbidities". Obesity and metabolism. 2021; 18 (1): 5–99 (in Russ.)]. DOI: 10.14341/omet12714
  20. Jin T. Current understanding on role of the Wnt signaling pathway effector TCF7L2 in glucose homeostasis. Endocr Rev. 2016; 37 (3): 254–77. DOI: 10.1210/er.2015-1146
  21. Nolan P.B., Carrick-Ranson G., Stinear J.W. et al. Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis. Prev Med Rep. 2017; 7: 211–5. DOI: 10.1016/j.pmedr.2017.07.004
  22. Бояринова М.А., Ротарь О.П., Костарева А.А., и др. Ассоциация rs9939609 полиморфизма гена FTO с метаболическим здоровьем у пациентов с ожирением в популяции жителей Санкт-Петербурга. Доктор.Ру. 2018; 8 (152): 20–4 [Boyarinova M.A., Rotar O.P., Kostareva A.A., et al. Association rs9939609 polymorphism of the FTO gene with metabolic health in obese patients in the population of residents of St. Petersburg. Doctor.Ru. 2018; 8 (152): 20–4 (in Russ.)]. DOI: 10.31550/1727-2378-2018-152-8-20-24
  23. Morandi A., Bonnefond A., Lobbens S. et al. Associations Between Type 2 Diabetes-Related Genetic Scores and Metabolic Traits, in Obese and Normal-Weight Youths. J Clin Endocrinol Metab. 2016; 101 (11): 4244–50. DOI: 10.1210/jc.2016-2432
  24. Павлова Н.И., Куртанов Х.А., Соловьева Н.А., и др. Ассоциация полиморфизма rs9939609 гена FTO с развитием ожирения в популяции якутов. Современные проблемы науки и образования. 2018; 5: 21 [Pavlova N.I., Kurtanov H.A., Solovyova N.A. et al. Association of polymorphism rs9939609 of the FTO gene with the development of obesity in the Yakut population. Modern problems of science and education. 2018; 5: 21 (in Russ.)].
  25. Canu L., Van Hemert J.A.W., Kerstens M.N. et al. CT characteristics of pheochromocytoma: significance for the assessment of adrenal incidentaloma. J Clin Endocrinol Metab. 2019; 104 (2): 312–8. DOI: 10.1210/jc.2018-01532
  26. Кытикова О.Ю., Антонюк М.В., Кантур Т.А. и др. Распространенность и биомаркеры метаболического синдрома. Ожирение и метаболизм. 2021; 18 (3): 302–12 [Kytikova O.Y., Antonyuk M.V., Kantur T.A. et al. Prevalence and biomarkers in metabolic syndrome. Obesity and metabolism. 2021; 18 (3): 302–12 (in Russ.)]. DOI: 10.14341/omet12704
  27. Monnerie S., Comte B., Ziegler D. et al. Metabolomic and Lipidomic Signatures of Metabolic Syndrome and its Physiological Components in Adults: A Systematic Review. Sci Rep. 2020; 10 (1): 669. DOI: 10.1038/s41598-019-56909-7
  28. Petkeviciene J., Smalinskiene A., Klumbiene J. et al. Physical activity, but not dietary intake, attenuates the effect of the FTO rs9939609 polymorphism on obesity and metabolic syndrome in Lithuanian adult population. Public Health. 2016; 135: 23–9. DOI: 10.1016/j.puhe.2016.02.00
  29. Корнеева Е.В., Воевода М.И., Семаев С.Е. и др. Ассоциация генетических маркеров с развитием метаболического синдрома среди молодых жителей севера. Современные проблемы науки и образования. 2019; 4: 29 [ Korneeva E.V., Voevoda M.I., Semaev S.E. et al. Association of genetic markers with the development of metabolic syndrome among young residents of the north. Modern problems of science and education. 2019; 4: 29 (in Russ.)].
  30. Muñoz A.M., Velásquez C.M., Agudelo G.M. et al. Examining for an association between candidate gene polymorphisms in the metabolic syndrome components on excess weight and adiposity measures in youth: a cross-sectional study. Genes Nutr. 2017; 12: 19. DOI: 10.1186/s12263-017-0567-1
  31. Lusis A., Attie A., Reue K. Metabolic syndrome: from epidemiology to systems biology. Nat Rev Genet. 2008; 9 (11): 819–30. DOI: 10.1038/nrg2468
  32. Мосалев К.И., Янковская С.В., Иванов И.Д. и др. Ассоциация носительства полиморфизма rs4646994 гена АСЕ с ожирением и андрогенным дефицитом у мужчин. Ожирение и метаболизм. 2022; 19 (3): 271–9 [Mosalev K.I., Yankovskaya S.V., Ivanov I.D. et al. Association of сarriage of the rs4646994 polymorphism of the ACE gene with obesity and androgen deficiency in men. Obesity and metabolism. 2022; 19 (3): 271–9 (in Russ.)]. DOI: 10.14341/omet12843
  33. Guan I., Yang L.H., Liu S.Y. et al. Correlation of TCF7L2 polymorphism (rs7903146) with increased risk of type 2 diabetes mellitus: meta-analysis. Genet Mol Res. 2016; 15 (3). DOI: 10.4238/gmr.15037969
  34. Galderisi A., Tricò D., Pierpont B. et al. A Reduced Incretin Effect Mediated by the rs7903146 Variant in the TCF7L2 Gene Is an Early Marker of β-Cell Dysfunction in Obese Youth. Diabetes Care. 2020; 43 (10): 2553–63. DOI: 10.2337/dc20-0445
  35. Galderisi A., Tricot D., Dalla Man S. et al. Metabolic and genetic determinants of glucose form after oral challenge in obese young people: a longitudinal study. J Clin Endocrinol Metab. 2020; 105 (2): 534–42. DOI: 10.1210/clinem/dgz207
  36. Shah M., Varghese R.T., Miles J.M. et al. The TCF7L2 genotype and alpha cell function in people without diabetes. Diabetes. 2016; 65 (2): 371–80. DOI: 10.2337/db15-1233
  37. Hsiao T.J., Lin E. Association of a common rs9939609 variant in the fat mass and obesity-associated (FTO) gene with obesity and metabolic phenotypes in a Taiwanese population: a replication study. J Genet. 2016; 95 (3): 595–601. DOI: 10.1007/s12041-016-0671-9
  38. Lara-Castro S., Fu Wu, Chung B.H. et al. Adiponectin and metabolic syndrome: mechanisms mediating the risk of metabolic and cardiovascular diseases. Curr Opin Lipidol. 2007; 18 (3): 263–70. DOI: 10.1097/mol.0b013e32814a645f