Respiratory fluoroquinolones in the treatment of specific and non-specific lung diseases (literature review)

DOI: https://doi.org/10.29296/25877305-2024-02-04
Issue: 
2
Year: 
2024

E. Yakovleva, Candidate of Medical Sciences; Professor E. Borodulina, MD; Associate Professor E. Eremenko, Candidate of Medical Sciences
Samara State Medical University, Ministry of Health of Russia

Fluoroquinolones, which were actively studied in the 1980s, are a completely synthetic group of antibiotics with no prototype in nature. The modern classification of fluoroquinolones includes four generations. Of greater practical interest are fluoroquinolones that act on respiratory pathogens and gram-negative bacteria. Purpose. To systematize the data accumulated to date on the importance of fluoroquinolones in the treatment of lung diseases. Material and Methods. A systematic search for publications that reviewed data on the importance of fluoroquinolones in the treatment of lung diseases was performed. Results. Fluoroquinolones are bactericidal drugs. They inhibit two vital enzymes of the microbial cell, DNA gyrase and topoisomerase-4, fluoroquinolones disrupt DNA synthesis, which leads to bacterial death. It is this property that is in demand in the search for drugs for the treatment of tuberculosis in the period of increasing drug resistance of Mycobacterium tuberculosis and the lack of new tuberculosis drugs. Simultaneously with the evidence of the effectiveness of «respiratory» fluoroquinolones in the treatment of pulmonary tuberculosis, there was a trend towards banning on their use for broad indications and limited use in the treatment of lung diseases. It is currently debated whether the widespread use of multidrug-resistant tuberculosis is related to previous treatment with fluoroquinolones in patients with lung disease without tuberculosis exclusion measures. Conclusion. Thus, fluoroquinolones are a strong and modern weapon in our hands, requiring a competent and thoughtful approach to practical use.

Keywords: 
fluoroquinolones
levofloxacin
tuberculosis
lung diseases.



References: 
  1. Синопальников А.И. Левофлоксацин в лечении внебольничных инфекций нижних дыхательных путей: взгляд через четверть века. Consilium Medicum. 2021; 23 (9): 466–76 [Sinopalnikov A.I. Levofloxacin in the treatment of community-acquired infections of the lower respiratory tract: a look through a quarter of a century. Consilium Medicum. 2021; 23 (9): 466–76 (in Russ.)]. DOI: 10.26442/20751753.2021.9.201055
  2. Torres A., Liapikou A. Levofloxacin for the treatment of respiratory tract infections. Expert Opin Pharmacother. 2012; 13 (8): 1203–12. DOI: 10.1517/14656566.2012.688952
  3. Cao G., Zhu Y., Xie X. еt al. Pharmacokinetics and pharmacodynamics of levofloxacin in bronchial mucosa and lung tissue of patients undergoing pulmonary operation. Exp Ther Med. 2020; 20 (1): 607–16. DOI: 10.3892/etm.2020.8715
  4. Deshpande D., Pasipanodya J.G., Mpagama S.G. еt al. Levofloxacin Pharmacokinetics/Pharmacodynamics, Dosing, Susceptibility Breakpoints, and Artificial Intelligence in the Treatment of Multidrug-resistant Tuberculosis. Clin Infect Dis. 2018; 28 (67): S293–S302. DOI: 10.1093/cid/ciy611
  5. Umarje S.P., Alexander C.G., Cohen A.J. Ambulatory Fluoroquinolone Use in the United States, 2015–2019. Open Forum Infect Dis. 2021; 8 (12): ofab538. DOI: 10.1093/ofid/ofab538
  6. Inbaraj L.R., Shewade H.D., Daniel J. еt al. Effectiveness and safety of Levofloxacin containing regimen in the treatment of Isoniazid mono-resistant pulmonary Tuberculosis: a systematic review. Front Med (Lausanne). 2023; 10: 1085010. DOI: 10.3389/fmed.2023.1085010
  7. Bhatt S., Chatterjee S. Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation – A comprehensive review. Environ Pollut. 2022; 315: 120440. DOI: 10.1016/j.envpol.2022.120440
  8. Scroggs S.L.P., Gass J.T., Chinnasamy R. et al. Evolution of resistance to fluoroquinolones by dengue virus serotype 4 provides insight into mechanism of action and consequences for viral fitness. Virology. 2021; 552: 94–106. DOI: 10.1016/j.virol.2020.09.004
  9. Luan G., Drlica K. Fluoroquinolone-Gyrase-DNA Cleaved Complexes. Methods Mol Biol. 2018; 1703: 269–81. DOI: 10.1007/978-1-4939-7459-7_19
  10. Derevianko I.I., Lavrinova L.N., Kudriashova E.E. Effectiveness of levofloxacin (Tavanik, "Aventis Pharma") in the treatment of complicated infections of the urogenital organs. Urologiia. 2003; 1: 31–4.
  11. Budanov S.V., Smirnova L.B. Levofloxacin (Tavanic) – a novel quinolone of the III generation. Antimicrobial activity, pharmacokinetics, clinical significance. Antibiot Khimioter. 2001; 46 (5): 31–8.
  12. Budanov S.V., Vasil'ev A.N., Smirnova L.B. The first 'respiration' fluoroquinolone--levofloxacin (Tavanic) in therapy of bacterial infections. Pharmacodynamics principles in optimization of administration regimens. Antibiot Khimioter. 2001; 46 (7): 38–46.
  13. Степанян И.Э., Мишин В.Ю. Фторхинолоны в лечении туберкулеза органов дыхания. РМЖ. 1999; 5: 14 [Stepanyan I.E., Mishin V.Yu. Ftorhinolony v lechenii tuberkuleza organov dyhaniya. RMJ. 1999; 5: 14 (in Russ.)].
  14. Вотчал Б.Е. Очерки клинической фармакологии. М.: Медицина, 1965; 492 [Votchal B.E. Ocherki klinicheskoj farmakologii. M.: Medicina, 1965; 492 (in Russ.)].
  15. Migliori G.B., Tiberi S., Zumla A. et al. MDR/XDR-TB management of patients and contacts: Challenges facing the new decade. The 2020 clinical update by the Global Tuberculosis Network. Int J Infect Dis. 2020; 92S: S15–S25. DOI: 10.1016/j.ijid.2020.01.042
  16. Fouad M., Gallegher J.C. Moxifloxacin as an alternative or additive therapy for treatment of pulmonary tuberculosis. Ann Pharmacother. 2011; 45 (11): 1439–44. DOI: 10.1345/aph.1Q299
  17. Rapid Evaluation of Moxifloxacin in the treatment of sputum smear positive Tuberculosis. REMoxTB. URL: https://www.tballiance.org/content/remox-tb-trial-paves-way-21st-century-tb-drug-trials
  18. International Multicentre Controlled Clinical Trial to Evaluate High Dose Rifapentine and a Quinolone in the Treatment of Pulmonary Tuberculosis. RIFAQUIN. URL: https://www.isrctn.com/ISRCTN44153044
  19. Ahmad N., Ahuja S.D., Akkerman O.W Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet. 2018; 392 (10150): 821–34. DOI: 10.1016/S0140-6736(18)31644-1
  20. Lan Z., Ahmad N., Baghaei P. et al. Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med. 2020; 8 (4): 383–94. DOI: 10.1016/S2213-2600(20)30047-3
  21. An Q., Lin R., Yang Q. et al. Evaluation of genetic mutations associated with phenotypic resistance to fluoroquinolones, bedaquiline, and linezolid in clinical Mycobacterium tuberculosis: A systematic review and meta-analysis. J Glob Antimicrob Resist. 2023; 34: 214–26. DOI: 10.1016/j.jgar.2023.05.001
  22. Chen T.C., Lu P.L., Lin C.Y. et al. Fluoroquinolones are associated with delayed treatment and resistance in tuberculosis: a systematic review and meta-analysis. Int J Infect Dis. 2011; 15 (3): e211–6. DOI: 10.1016/j.ijid.2010.11.008
  23. Ye M., Yuan W., Molaeipour L. et al. Antibiotic heteroresistance in Mycobacterium tuberculosis isolates: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob. 2021; 20 (1): 73. DOI: 10.1186/s12941-021-00478-z
  24. Goyal V., Kadam V., Narang P. et al. Prevalence of drug-resistant pulmonary tuberculosis in India: systematic review and meta-analysis. BMC Public Health. 2017; 17 (1): 817. DOI: 10.1186/s12889-017-4779-5
  25. Hogan C.A., Puri L., Gore G. et al. Impact of fluoroquinolone treatment on delay of tuberculosis diagnosis: A systematic review and meta-analysis. J Clin Tuberc Other Mycobact Dis. 2016; 6: 1–7. DOI: 10.1016/j.jctube.2016.12.001
  26. Ziganshina L.E., Titarenko A.F., Davies G.R. Fluoroquinolones for treating tuberculosis (presumed drug-sensitive). Cochrane Database Syst Rev. 2013; 2013 (6): CD004795. DOI: 10.1002/14651858.CD004795.pub4
  27. Diriba G., Alemu A., Yenew B. et al. Epidemiology of extensively drug-resistant tuberculosis among patients with multidrug-resistant tuberculosis: A systematic review and meta-analysis. Int J Infect Dis. 2023; 132: 50–63. DOI: 10.1016/j.ijid.2023.04.392
  28. Zhou G., Luo S., He J. et al. Effectiveness and safety of tuberculosis preventive treatment for contacts of patients with multidrug-resistant tuberculosis: a systematic review and meta-analysis. Clin Microbiol Infect. 2024; 30 (2): 189–96. DOI: 10.1016/j.cmi.2023.09.015
  29. Grossman R.F., Hsueh P.R., Gillespie S.H. et al. Community-acquired pneumonia and tuberculosis: differential diagnosis and the use of fluoroquinolones. Int J Infect Dis. 2014; 18: 14–21. DOI: 10.1016/j.ijid.2013.09.013
  30. Craig S.E., Bettinson H., Sabin C.A. et al. Think TB! Is the diagnosis of pulmonary tuberculosis delayed by the use of antibiotics? Int J Tuberc Lung Dis. 2009; 13 (2): 208–13.
  31. Jeon C.Y., Calver A.D., Victor T.C. et al. Use of fluoroquinolone antibiotics leads to tuberculosis treatment delay in South African gold mining community. Int J Tuberc Lung Dis. 2011; 15 (1): 77–83.
  32. Gaba P.D., Haley C., Griffin M.R. et al. Increasing outpatient fluoroquinolone exposure before tuberculosis diagnosis and impact on culture-negative disease. Arch Intern Med. 2007; 167 (21): 2317–22. DOI: 10.1001/archinte.167.21.2317
  33. Zhang Y., Post W.S., Blasco-Colmenares E. et al Electrocardiographic QT interval and mortality: a metaanalysis. Epidemiology. 2011; 22 (5): 660–70. DOI: 10.1097/EDE.0b013e318225768b
  34. Taubel J., Prasad K., Rosano G. et al. Effects of the Fluoroquinolones Moxifloxacin and Levofloxacin on the QT Subintervals: Sex Differences in Ventricular Repolarization. J Clin Pharmacol. 2020; 60 (3): 400–8. DOI: 10.1002/jcph.1534
  35. Jun C., Fang B. Current progress of fluoroquinolones-increased risk of aortic aneurysm and dissection. BMC Cardiovasc Disord. 2021; 21 (1): 470. DOI: 10.1186/s12872-021-02258-1
  36. Ether N.D., Leishman D.J., Bailie M.B. et al. QT Ratio: A simple solution to individual QT correction. J Pharmacol Toxicol Methods. 2022; 117: 107211. DOI: 10.1016/j.vascn.2022.107211
  37. Gorelik E., Masarwa R., Perlman A. et al. Fluoroquinolones and Cardiovascular Risk: A Systematic Review, Meta-analysis and Network Meta-analysis. Drug Saf. 2019; 42 (4): 529–38. DOI: 10.1007/s40264-018-0751-2
  38. Zhang Y., Post W.S., Dalal D. et al. QT-Interval Duration and Mortality Rate. Results From the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2011; 171 (19): 1727–33.
  39. Бокерия Л.А., Бокерия О.Л., Глушко Л.А. Механизмы нарушений ритма сердца. Анналы аритмологии. 2010; 7 (3): 69–79 [Bockeria L.A., Bockeria O.L., Glushko L.A. Cardiac rhythm disturbance mechanisms. Annaly aritmologii. 2010; 7 (3): 69–79 (in Russ.)].
  40. Фурман Н.В., Шматова С.С. Клиническое значение удлинения интервалов QT и QTC на фоне приема лекарственных препаратов. Рациональная фармакотерапия в кардиологии. 2013; 9 (3): 311–5 [Furman N.V., Shmatova S.S. Clinical significance of drug induced intervals QT and QTC prolongation. Rational Pharmacotherapy in Cardiology. 2013; 9 (3): 311–5 (in Russ.)]. DOI: 10.20996/1819-6446-2013-9-3-311-315