A change in the gut microbiota composition in patients with chronic heart failure and small bacterial overgrowth syndrome

DOI: https://doi.org/10.29296/25877305-2023-05-09
Issue: 
5
Year: 
2023

M. Fadeeva; O. Zolnikova, MD; M. Skhirtladze, Candidate of Medical Sciences; Professor V. Ivashkin, MD, Academician of the Russian Academy of Sciences
I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia

A change in the gut microbiota composition is a risk factor for the development and progression of a number of socially significant diseases. Thus, the prevalence of small bacterial overgrowth syndrome (SBOS) in patients with chronic heart failure CHF) is 38.2–42.0%, as shown by different data, which greatly exceeds that among the persons without CHF. SBOS in CHF is associated with the higher risk of long-term complications (hospitalization and death). Objective. To study the qualitative changes in the large bowel gut microbiota in patients with CHF and SBOS. Subjects and methods. The investigation enrolled 60 patients with CHF and a left ventricular ejection fraction of

Keywords: 
cardiology
gastroenterology
chronic heart failure
bacterial overgrowth syndrome
gut microbiota.



References: 
  1. Yoshii K., Hosomi K., Sawane K. et al. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity. Front Nutr. 2019; 6: 48. DOI: 10.3389/fnut.2019.00048
  2. Walker A.W., Ince J., Duncan S.H. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011; 5 (2): 220–30. DOI: 10.1038/ismej.2010.118
  3. Martinez-Guryn K., Leone V., Chang E.B. Regional Diversity of the Gastrointestinal Microbiome. Cell Host Microbe. 2011; 26 (3): 314–24. DOI: 10.1016/j.chom.2019.08.011
  4. Wu W., Chen F., Liu Z. et al. Microbiota-specific Th17 Cells: Yin and Yang in Regulation of Inflammatory Bowel Disease. Inflamm Bowel Dis. 2016; 22 (6): 1473–82. DOI: 10.1097/MIB.0000000000000775
  5. Leite G., Morales W., Weitsman S. et al. The duodenal microbiome is altered in small intestinal bacterial overgrowth. PloS One. 2020; 15 (7): e0234906. DOI: 10.1371/journal.pone.0234906
  6. Mollar A., Villanueva M. P., Núñez E. et al. Hydrogen- and Methane-Based Breath Testing and Outcomes in Patients with Heart Failure. J Card Fail. 2019; 25 (5): 319–27. DOI: 10.1016/j.cardfail.2018.10.004
  7. Фадеева М.В., Схиртладзе М.Р., Ивашкин В.Т. Синдром избыточного бактериального роста в тонкой кишке как фактор риска развития желудочковой тахикардии при хронической сердечной недостаточности с систолической дисфункцией левого желудочка. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019; 29 (3): 38–48 [Fadeeva M.V., Skhirtladze M.R., Ivashkin V.T. Small Intestinal Bacterial Overgrowth Syndrome as a Risk Factor for Ventricular Tachycardia in Chronic Heart Failure with Left Ventricular Systolic Dysfunction. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2019; 29 (3): 38–48 (in Russ.)]. DOI: 10.22416/1382-4376-2019-29-3-38-48
  8. Lauritano E.C., Valenza V., Sparano L. et al. Small intestinal bacterial overgrowth and intestinal permeability. Scand J Gastroenterol. 2010; 45 (9): 1131–2. DOI: 10.3109/00365521.2010.485325
  9. Yang T., Santisteban M.M., Rodriguez V. et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015; 65 (6): 1331–40. DOI: 10.1161/HYPERTENSIONAHA.115.05315
  10. Luedde M., Winkler T., Heinsen F. A. et al. Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail. 2017; 4 (3): 282–90. DOI: 10.1002/ehf2.12155
  11. Katsimichas T., Ohtani T., Motooka D. et al. Non-Ischemic Heart Failure With Reduced Ejection Fraction Is Associated With Altered Intestinal Microbiota. Circ J. 2018; 82 (6): 1640–50. DOI: 10.1253/circj.CJ-17-1285
  12. Фадеева М.В., Кудрявцева А.В., Краснов Г.С. и др. Кишечная микробиота у больных хронической сердечной недостаточностью с систолической дисфункцией. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2020; 30 (2): 35–44 [Fadeeva M.V., Kudryavtseva A.V., Krasnov G.S. et al. Intestinal Microbiota in Patients with Chronic Heart Failure and Systolic Dysfunction. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2020; 30 (2): 35–44 (in Russ.)]. DOI: 10.22416/1382-4376-2020-30-2-35-44
  13. Ивашкин В.Т., Маев И.В., Абдулганиева Д.И. и др. Практические рекомендации Научного сообщества по содействию клиническому изучению микробиома человека (НСОИМ) и Российской гастроэнтерологической ассоциации (РГА) по диагностике и лечению синдрома избыточного бактериального роста у взрослых. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2022; 32 (3): 68–85 [Ivashkin V.T., Maev I.V., Abdulganieva D.I. et al. Practical Recommendation of the Scientific Сommunity for Human Microbiome Research (CHMR) and the Russian Gastroenterological Association (RGA) on Small Intestinal Bacterial Overgrowth in Adults. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2022; 32 (3): 68–85 (in Russ.)]. DOI: 10.22416/1382-4376-2022-32-3-68-85
  14. Cani P.D., Bibiloni R., Knauf C. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008; 57 (6): 1470–81. DOI: 10.2337/db07-1403
  15. Li J., Lin S., Vanhoutte P.M. et al. Akkermansia Muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe-/- Mice. Circulation. 2016; 133 (24): 2434–46. DOI: 10.1161/CIRCULATIONAHA.115.019645
  16. Derrien M., Vaughan E.E., Plugge C.M. et al. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004; 54 (Pt 5): 1469–76. DOI: 10.1099/ijs.0.02873-0
  17. Zhang L., Qin Q., Liu M. et al. Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats. Pathog Dis. 2018; 76 (4). DOI: 10.1093/femspd/fty028
  18. Depommier C., Everard A., Druart C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019; 25 (7): 1096–103. DOI: 10.1038/s41591-019-0495-2
  19. Taras D., Simmering R., Collins M.D. et al. Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces. Int J Syst Evol Microbiol. 2002; 52 (Pt 2): 423–8. DOI: 10.1099/00207713-52-2-423
  20. Companys J., Gosalbes M. J., Pla-Pagà L. et al. Gut Microbiota Profile and Its Association with Clinical Variables and Dietary Intake in Overweight/Obese and Lean Subjects: A Cross-Sectional Study. Nutrients. 2021; 13 (6): 2032. DOI: 10.3390/nu13062032
  21. Liu R., Hong J., Xu X. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017; 23 (7): 859–68. DOI: 10.1038/nm.4358
  22. Pitcher M.C., Beatty E.R., Cummings J.H. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut. 2000; 46 (1): 64–72. DOI: 10.1136/gut.46.1.64
  23. Jia W., Whitehead R.N., Griffiths L. et al. Diversity and distribution of sulphate-reducing bacteria in human faeces from healthy subjects and patients with inflammatory bowel disease. FEMS Immunol Med Microbiol. 2012; 65 (1): 55–68. DOI: 10.1111/j.1574-695X.2012.00935.x
  24. Attene-Ramos M.S., Nava G.M., Muellner M.G. et al. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ Mol Mutagen. 2010; 51 (4): 304–14. DOI: 10.1002/em.20546
  25. Earley H., Lennon G., Balfe A. et al. A Preliminary Study Examining the Binding Capacity of Akkermansia muciniphila and Desulfovibrio spp., to Colonic Mucin in Health and Ulcerative Colitis. PloS One. 2015; 10 (10): e0135280. DOI: 10.1371/journal.pone.0135280