Effects of SARS-CoV-2 on the endocrine system

DOI: https://doi.org/10.29296/25877305-2023-05-02
Issue: 
5
Year: 
2023

O. Kruglova(1), Professor I. Demko(1, 2), MD; Professor E. Sobko(1, 2), MD; S. Geyl(1), Yu. Khramova(1); E. Mineeva(1, 2),
1-Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
2-Territorial Clinical Hospital, Krasnoyarsk

The paper considers the publications that reports endocrine changes in patients with SARS-CoV-2 and SARS-CoV. In the electronic database PubMed, the investigators sought by using the terms of subject headings (MESH) associated with SARS-CoV, SARS-CoV-2 and different hormones. To search for the publications, the interval was taken from January 2002 and to the present time, since the outbreak of SARS-CoV occurred in 2002. The articles dealing with the outbreaks of both viruses were considered. The viruses of the family SARS-CoV(-2) cause systemic diseases involving many organs. The patients are observed to have hormonal and metabolic disorders. There are data on the damaging effect of both SARS-CoV and SARS-CoV-2 on the pancreas and thyroid, adrenals and gonads.

Keywords: 
infectious diseases
endocrinology
SARS-CoV-2
endocrine changes
post-COVID conditions
angiotensin-converting enzyme receptors



References: 
  1. Трошина Е.А., Панфилова Е.А., Михина М.С. и др. Тиреоидиты. Методические рекомендации (в помощь практическому врачу). Consilium Medicum. 2019; 21 (12): 10–22 [Troshina E.A., Panfilova E.A., Mikhina M.S., Sviridonova M.A. Thyroiditis. Guidelines (to help the practitioner). Consilium Medicum. 2019; 21 (12): 10–22 (in Russ.)]. DOI: 10.26442/20751753.2019.12.190683
  2. Hyöty H., Taylor K. The role of viruses in human diabetes. Diabetologia. 2002; 45: 1353–61. DOI: 10.1007/s00125-002-0852-3
  3. Gilden D., Cohrs R.J., Mahalingam R. et al. Neurological Disease Produced by Varicella Zoster Virus Reactivation Without Rash. Varicella-zoster Virus. 2010; 342: 245–53. DOI: 10.1007/82_2009_3
  4. Badani H., White T., Schulick N. et al. Frequency of varicella zoster virus DNA in human adrenal glands. J Neurovirol. 2016; 22 (3): 400–2. DOI: 10.1007/s13365-016-0425-8
  5. Кабыш С.С., Карпенкова А.Д., Прокопенко С.В. Когнитивные нарушения и COVID-19. Сибирское медицинское обозрение. 2022; 2: 40–8 [Kabysh S.S., Karpenkova A.D., Prokopenko S.V. Cognitive impairments and COVID-19. Siberian Medical Review. 2022; 2: 40–8 (in Russ.)]. DOI: 10.20333/25000136-2022-2-40-48
  6. Фелиг Ф., Бакстер Дж.Д., Бродус А.Е. и др. Эндокринология и метаболизм. Т. 2. М.: Медицина, 1985; с. 517 [Felig Ph., Baxter J.D., Brodus A.E. et al. Endocrinologу and metabolism. T. 2. M.: Meditsina, 1985; s. 517 (in Russ.)].
  7. Leow M.K., Kwek D.S., Ng A.W. et al. Hypocortisolism in survivorsofsevereacuterespiratorysyndrome (SARS). Clin Endocrinol (Oxf). 2005; 63 (2): 197–202. DOI: 10.1111/j.1365-2265.2005.02325.x
  8. Demitrack M.A., Crofford L.J. Evidence for and Pathophysiologic Implications of Hypothalamic-Pituitary-Adrenal Axis Dysregulation in Fibromyalgia and Chronic Fatigue Syndrome. Ann N Y Acad Sci. 2006; 840: 684–97. DOI: 10.1111/j.1749-6632.1998.tb09607.x
  9. Jefferies W.M.K., Turner J.C., Lobo M. et al. Low Plasma Levels of Adrenocorticotropic Hormone in Patients with Acute Influenza. Clin Infect Dis. 1998; 26 (3): 708–10. DOI: 10.1086/514594
  10. Wheatland R. Molecular mimicryof ACTH in SARS – implications for corticosteroid treatment and prophylaxis. Med Hypotheses. 2004; 63 (5): 855–62. DOI: 10.1016/j.mehy.2004.04.009
  11. Ding Y., Wang H., Shen H. et al. The clinical pathology of severe acute respiratory syndrome (SARS): a reportfrom China. J Pathol. 2003; 200 (3): 282–9. DOI: 10.1002/path.1440
  12. Ding Y., He L., Zhang Q. et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004; 203 (2): 622–30. DOI: 10.1002/path.1560
  13. Gu J., Gong E., Zhang B. et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005; 202 (3): 415–24. DOI: 10.1084/jem.20050828
  14. Wang W., Ye Y.X., Yao H. Evaluation and observation of serum thyroid hormone and parathyroid hormone in patients with severe acute respiratory syndrome. J Chin Antituberculous Assoc. 2003; 25 (4): 232–4.
  15. Wei L., Sun S., Xu C.H. et al. Pathology of the thyroid in severe acute respiratory syndrome. Hum Pathol. 2007; 38 (1): 95–102. DOI: 10.1016/j.humpath.2006.06.011
  16. Chan J.W., Ng C.K., Chan Y.H. et al. Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS). Thorax. 2003; 58 (8): 686–9. DOI: 10.1136/thorax.58.8.686
  17. Yang J.K., Lin S.S., Ji X.J. et al. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010; 47 (3): 193–9. DOI: 10.1007/s00592-009-0109-4
  18. Pohl M.O., Busnadiego I., Kufner V. et al. SARS-CoV-2 variants reveal features critical for replication in primary human cells. PLoS Biol. 2021; 19 (3): e3001006. DOI: 10.1371/journal.pbio.3001006
  19. Lazartigues E., Qadir M.M.F., Mauvais-Jarvis F. Endocrine Significanceof SARS-CoV-2’s Reliance on ACE2. Endocrinology. 2020; 161 (9): 1–7. DOI: 10.1210/endocr/bqaa108
  20. Agarwal S., Agarwal S.K. Endocrine changes in SARS-CoV-2 patients and lessons from SARS-CoV. Postgrad Med J. 2020; 96 (1137): 412–6. DOI: 10.1136/postgradmedj-2020-137934
  21. Wu Z., McGoogan J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323 (13): 1239–42. DOI:10.1001/jama.2020.2648
  22. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the Cytokine Storm' in COVID-19. J Infect. 2020; 80 (6): 607–13. DOI: 10.1016/j.jinf.2020.03.037
  23. Mateu-Salat M., Urgel, E., Chico A. SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves’ disease after COVID-19. J Endocrinol Invest. 2020; 43: 1527–8. DOI: 10.1007/s40618-020-01366-7
  24. Chen M., Zhou W., Xu W. Thyroid Function Analysis in 50 Patients with COVID-19: A Retrospective Study. Thyroid. 2021; 31 (1): 8–11. DOI: 10.1089/thy.2020.0363
  25. Brancatella A., Ricci D., Cappellani D. et al. Is Subacute Thyroiditis an Underestimated Manifestation of SARS-CoV-2 Infection? Insights From a Case Series. J Clin Endocrinol Metab. 2020; 105 (10): 3742–6. DOI: 10.1210/clinem/dgaa537
  26. Solis C.N., Foreman J.H. Transient diabetes mellitus in a neonatal Thoroughbred foal. J Vet Emerg Crit Care. 2010; 20 (6): 611–5. DOI: 10.1111/j.1476-4431.2010.00588.x
  27. Guo W., Li M., Dong Y. et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020; 36 (7): e3319. DOI: 10.1002/dmrr.3319
  28. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497–506. DOI: 10.1016/S0140-6736(20)30183-5
  29. Li M.Y., Li L., Zhang Y. et al. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020; 9 (45): 1–7. DOI: 10.1186/s40249-020-00662-x
  30. Mao Y., Xu B., Guan W. et al. The Adrenal Cortex, an Underestimated Site of SARS-CoV-2 Infection. Front Endocrinol. 2021; 9 (593179): 1–11. DOI: 10.3389/fendo.2020.593179
  31. Zinserling V.A., Semenova N.Y., Markov A.G. et al. Inflammatory Cell Infiltration of Adrenals in COVID-19. Horm Metab Res. 2020; 52 (9): 639–41. DOI: 10.1055/a-1191-8094
  32. Paul T., Ledderose S., Bartsch H. et al. Adrenal tropism of SARS-CoV-2 and adrenal findings in a post-mortem case series of patients with severe fatal COVID-19. Nature Communications. 2022; 13 (1). DOI: 10.1038/s41467-022-29145-3
  33. Lechan R.M., Toni R. Functional Anatomy of the Hypothalamus and Pituitary. South Dartmouth (MA): MD Text.com, Inc. Endotext, 2016. URL: http://www.ncbi.nlm.nih.gov/pubmed/25905349
  34. Guijarro A., Laviano A., Meguid M.M. Hypothalamic integration of immune function and metabolism. Prog Brain Res. 2006; 153: 367–405. DOI: 10.1016/S0079-6123(06)53022-5
  35. Saper C., Scammell T., Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005; 437: 1257–63. DOI: 10.1038/nature04284
  36. Ganapathy M.K, Tadi P. Anatomy, Head and Neck, Pituitary Gland. StatPearls, 2022. URL: https://europepmc.org/article/NBK/nbk551529
  37. Kandasamy M., Radhakrishnan R.K., PoornimaiAbirami G.P. et al. Possible Existence of the Hypothalamic-Pituitary-Hippocampal (HPH) Axis: A Reciprocal Relationship Between Hippocampal Specific Neuroestradiol Synthesis and Neuroblastosis in Ageing Brains with Special Reference to Menopause and Neurocognitive Disorders. Neurochem Res. 2019; 44: 1781–95. DOI: 10.1007/s11064-019-02833-1
  38. Daniel P.M. Anatomy of the hypothalamus and pituitary gland. J Clin Pathol. 1976; 1 (1): 1–7.
  39. Smith S.M., Vale W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006; 8 (4): 383–95. DOI: 10.31887/DCNS.2006.8.4/ssmith
  40. Selvaraja K., Manickamb N., Kumarana E. et al. Deterioration of neuroregenerative plasticity in association with testicular atrophy and dysregulation of the hypothalamic-pituitary-gonadal (HPG) axis in Huntington’s disease: A putative role of the huntingtin gene in steroidogenesis. J Steroid Biochem Mol Biol. 2020; 197: 105526. DOI: 10.1016/j.jsbmb.2019.105526
  41. Plant T.M. 60 years of neuroendocrinology: The hypothalamo-pituitary-gonadal axis. J Endocrinol. 2015; 226 (2): 41–54. DOI: 10.1530/JOE-15-0113
  42. Ramaswamy S., Weinbauer G.F. Endocrine control of spermatogenesis: Role of FSH and LH/ testosterone, Spermatogenesis. Spermatogenesis. 2014; 4 (2): e996025. DOI: 10.1080/21565562.2014.996025
  43. Pozzilli P., Lenzi A. Commentary: Testosterone, a key hormone in the context of COVID-19 pandemic. Metabolism. 2020; 108 (154252): 1–2. DOI: 10.1016/j.metabol.2020.154252
  44. Clavijo R.I., Hsiao W. Update on male reproductive endocrinology. Transl Androl Urol. 2018; 7 (3): 367–72. DOI: 10.21037/tau.201
  45. Viau V. Functional Cross-Talk Between the Hypothalamic-Pituitary-Gonadal and -Adrenal Axes. J Neuroendocrinol. 2002; 14 (6): 506–13. DOI: 10.1046/j.1365-2826.2002.00798.x
  46. Ma L., Xie W., Li D. et al. Effect of SARS-CoV-2 infection upon male gonadal function: A single center-based study. MedRxiv. 2020. DOI: 10.1101/2020.03.21.20037267
  47. Çayan S., Uğuz M., Saylam B. et al. Effect of serum total testosterone and its relationship with other laboratory parameters on the prognosis of coronavirus disease 2019 (COVID-19) in SARS-CoV-2 infected male patients: a cohort st udy. Aging Male. 2020; 23 (5): 1493–503. DOI: 10.1080/13685538.2020.1807930
  48. Pascual-Goñi E., Fortea J., Martinez-Domeño A. et al. COVID-19-associated ophthalmoparesis and hypothalamic involvement. Neurol Neuroimmunol Neuroinflamm. 2020; 7 (5): 1–5. DOI: 10.1212/NXI.0000000000000823
  49. Selvaraj K., Ravichandran S., Krishnan S. et al. Testicular Atrophy and Hypothalamic Pathology in COVID-19: Possibility of the Incidence of Male Infertility and HPG Axis Abnormalities. Reprod Sci. 2021; 28: 2735–42. DOI: 10.1007/s43032-020-00441-x
  50. Mogensen T.H., Paludan S.R. Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev. 2001; 65 (1): 131–50. DOI: 10.1128/MMBR.65.1.131-150.2001
  51. Malmgaard L. Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res. 2004; 24 (8): 439–54. DOI: 10.1089/1079990041689665
  52. Mastorakos G., Pavlatou M.G., Mizamtsidi M. The hypothalamic-pituitary-adrenal and the hypothalamic-pituitary-gonadal axes interplay. Pediatr Endocrinol Rev. 2006; 3 (1): 172–81.
  53. Whirledge S., Cidlowski J.A. Glucocorticoids, stress, and fertility. Minerva Endocrinol. 2010; 35 (2): 109–25