Possibilities and prospects of epigenetic rehabilitation in patients with external genital endometriosis

DOI: https://doi.org/10.29296/25877305-2022-05-01
Issue: 
5
Year: 
2022

E. Begovich(1), Professor A. Solopova(1), MD; S. Khlopkova(2); A. Vlasina(1), V. Kuznetsova(1),
1-I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
2-L.A. Vorokhobov City Clinical Hospital Sixty-Seven, Moscow Healthcare Department

Epigenetics is a modern promising field that studies the activity of genes in response to environmental and lifestyle factors. Knowledge of epigenetic mechanisms, starting from intrauterine development, can expand the possibilities of timely treatment of external genital endometriosis, early prevention of relapses and carcinogenesis. The present review considers and systematizes data on the use of epigenetic mechanisms in rehabilitation based on the analysis of modern scientific medical literature, both domestic and foreign. This study showed that epigenetic mechanisms significantly affect the formation of external genital endometriosis and endometriosis-associated ovarian cancer. Standard therapy in combination with epigenetic rehabilitation will lead to a decrease in the recurrence of the disease and stabilization of the achieved results. Thus, it is crucially important to develop pathogenetically substantiated comprehensive rehabilitation schemes that will provide a personalized approach, timely prevention, prognosis and treatment of external genital endometriosis.

Keywords: 
gynecology
epigenetics
external genital endometriosis
lifestyle
environmental factors
rehabilitation



References: 
  1. Tiffon C. The Impact of Nutrition and Environmental Epigenetics on Human Health and Disease. Int J Mol Sci. 2018; 19 (11): 3425. DOI: 10.3390/ijms19113425
  2. Maksimenko LV. Epigenetics as an evidence base of the impact of lifestyle on health and disease. Profilakticheskaya Meditsina. 2019; 22 (2): 115–20. (in Russ.). DOI: 10.17116/profmed201922021115
  3. Dubinskaya E.D., Gasparov A.S. Kolesnikova S.N. et al. Epigenetics in Clinical Gynecology. Vopr ginekol akus perinatol = Gynecology, Obstetrics and Perinatology. 2021; 20 (2): 110–6 (in Russ.). DOI: 10.20953/1726-1678-2021-2-110-116
  4. Solopova A.G., Achkasov E.E., Moskvichyova V.S. et al. External genital endometriosis: treatment and rehabilitation. Obstetrics, Gynecology and Reproduction. 2021; 15 (1): 70–9 (in Russ.). DOI: 10.17749/2313-7347/ob.gyn.rep.2020.148
  5. Grimstad F.W., Decherney A.A review of the epigenetic contributions to endometriosis. Clin Obstet Gynecol. 2017; 60 (3): 467–76. DOI: 10.1097/GRF.0000000000000298
  6. Li W.-N., Wu M.-H., Tsai S.-J. Hypoxia and reproductive health: The role of hypoxia in the development and progression of endometriosis. Reproduction. 2021; 161 (1): 19–31. DOI: 10.1530/REP-20-0267
  7. Herreros-Villanueva M., Chen C-C., Tsai E-M. et al. Endometriosis-associated ovarian cancer: What have we learned so far? Clin Chim Acta. 2019; 493: 63–72. DOI: 10.1016/j.cca.2019.02.016
  8. Petrovic N., Davidovic R., Bajic V. et al. MictoRNA in breast cancer: The association with BRCA1/2. Cancer Biomark. 2017; 19 (2): 119–28. DOI: 10.3233/CBM-160319
  9. Mashayekhi P., Noruzinia M., Zeinali S. et al. Endometriotic mesenchymal stem cells epigenetic pathogenesis: Deregulation of miR-200b, miR-145, and let7b in a functional imbalanced epigenetic disease. Cell J. 2019; 21 (2): 179–85. DOI: 10.22074/cellj.2019.5903
  10. Koninckx P.R., Ussia A., Adamyan L. et al. Pathogenesis of endometriosis: the genetic/epigenetic theory. Fertil Steril. 2019; 111 (2): 327–40. DOI: 10.1016/j.fertnstert.2018.10.013
  11. Koninckx P.R., Ussia A., Adamyan L. et al. Infection as a potential cofactor in the genetic-epigenetic pathophysiology of endometriosis:a systematic review. Facts Views Vis Obgyn. 2019; 11 (3): 209–16
  12. Chen C., Song X., Wei W. et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun. 2017; 8 (1): 875. DOI: 10.1038/s41467-017-00901-0
  13. Esfandiari F., Favaedi R., Heidari-Khoei H. et al. Insight into epigenetics of human endometriosis organoids: DNA methylation analysis of HOX genes and their cofactors. Fertil Steril. 2021; 115 (1): 125–37. DOI: 10.1016/j.fertnstert.2020.08.1398
  14. Lagana A.S., Garzon S., Götte M. et al. The pathogenesis of endometriosis: Molecular and cell biology insights. Int J Mol Sci. 2019; 20 (22): 5615. DOI: 10.3390/ijms20225615
  15. Kaprin A.D. Onkoginekologiya: natsional’noe rukovodstvo. M.: GEOTAR-Media, 2019; 384 (in Russ.). DOI: 10.33029/9704-5329-2-ONR-2019-1-384
  16. Bulun S.E., Wan Y., Matei D. Epithelial mutations in endometriosis: Link to ovarian cancer. Endocrinology. 2019; 160 (3): 626–38. DOI: 10.1210/en.2018-00794
  17. He J., Chang W., Feng C. et al. Endometriosis malignant transformation: epigenetics as a probable mechanism in ovarian tumorigenesis. Int J Genomics. 2018; 1-13. DOI: 10.1155/2018/1465348
  18. Levakov S.A., Mamedova A.E., Azadova G.Ya. et al. The expression level of long non-coding RNAs ROR and MALAT1 in endometriosis. Obstetrics and Gynegology. 2021; 5: 141–5 (in Russ.). DOI: 10.18565/aig.2021.5.141-145
  19. Begovich E., Solopova A.G., Bitsadze V.O. et al. Endometriosis-associated cancer: modern aspects of etiopathogenesis, treatment and rehabilitation. Obstetrics, Gynecology and Reproduction. 2021; 15 (3): 287–94 (in Russ.). DOI: 10.17749/2313-7347/ob.gyn.rep.2021.206
  20. Ruegsegger G.N., Grigsby K.B., Kelty T.J. et al. Maternal Western diet age-specifically alters female offspring voluntary physical activity and dopamine-and leptin-related gene expression. FASEB J. 2017; 31 (12): 5371–83. DOI: 10.1096/fj.201700389R
  21. House J.S., Mendez M., Maguire R.L. et al. Periconceptional maternal mediterranean diet is associated with favorable offspring behaviors and altered CpG methylation of imprinted genes. Front Cell Dev Biol. 2018; 6: 107. DOI: 10.3389/fcell.2018.00107
  22. Ek W.E., Tobi E.W., Ahsan M. et al. Tea and coffee consumption in relation to DNA methylation in four European cohorts. Hum Mol Genet. 2017; 26 (16): 3221–31. DOI: 10.1093/hmg/ddx194
  23. Tiffon C. Histone deacetylase inhibition restores expression of hypoxia-inducible protein NDRG1 in pancreatic cancer. Pancreas. 2018; 47 (2): 200–7. DOI: 10.1097/MPA.0000000000000982
  24. Abdul Q.A., Yu B.P., Chung H.Y. et al. Epigenetic modifications of gene expression by lifestyle and environment. Arch Pharm Res. 2017; 40 (11): 1219–37. DOI: 10.1007/s12272-017-0973-3
  25. Vesnina A., Prosekov A., Kozlova O. et al. Genes and eating preferences, their roles in personalized nutrition. Genes (Basel). 2020; 11 (4): 357. DOI: 10.3390/genes11040357
  26. Hardeland R. Melatonin and inflammation-Story of a double-edged blade. J Pineal Res. 2018; 65 (4): 12525. DOI: 10.1111/jpi.12525
  27. Kuznetsova I.V. Adjuvant Therapy for Uterine Fibroids and Genital Endometriosis. Effektivnaya farmakoterapiya. 2021; 17 (19): 20–30 (in Russ.). DOI: 10.33978/2307-3586-2021-17-19-20-30
  28. Kiselev V.I., Muyzhnek E.L., Ashrafyan L.A. et al. Epigenetics in gynecology and oncogynecology: WIF and reality. Akusherstvo i ginekologiya: novosti, mneniya, obuchenie. 2018; 1: 18–26 (in Russ.).
  29. Khashukoeva A.Z., Khlynova S.A., Ilyina I.Yu. et al. Estrogen-dependent conditions of the female reproductive system: possibilities of nonhormonal therapy using indole-3-carbinol. Obstetrics and Gynegology. 2020; 5: 65–9 (in Russ.). DOI: 10.18565/aig.2020.5.65-69