THE OROPHARYNGEAL MICROBIOME CHANGE UNDER BRONCHIAL ASTHMA DISEASE

DOI: https://doi.org/10.29296/25877305-2020-02-08
Download full text PDF
Issue: 
2
Year: 
2020

O. Zolnikova, Candidate of Medical Sciences; N. Potskhverashvili; N. Kokina, Candidate of Medical Sciences; A. Trukhmanov, MD; Professor V. Ivashkin, MD, Academician of the Russian Academy of Sciences I.M. Sechenov First Moscow State Medical University (Sechenov University)

A human microbiota change is considered as one of the important factors in the pathogenesis of many socially significant diseases including the respiratory tract diseases. The aim of our research was to study the composition changes of the oropharyngeal microbiota in the patients with atopic and non-atopic phenotype of bronchial asthma. Materials and methods. There were examined 27 patients with bronchial asthma and 10 clinically healthy individuals in the study. The studies of microbiota in the oropharyngeal smear samples were carried out by the 16S rRNA gene sequencing. Results. In patients with the BA were revealed the quantitative and qualitative changes in the oropharyngeal biotope : such as the significant decrease in the families of Porphyromonadaceae, Flavobacteriaceae, class Clostridia, family Peptostreptococcaceae, genus Oribacterium (family Lachnospiraceae), class Fusobacteriia, genus Fusobacteriia, family Burkholderiaceae genus Haemophilus (family Pasteurellaceae) (p0.05). The changes in the bacterial spectrum showed a moderate strength and the strong direct and reverse correlation with the main clinical and laboratory manifestations of BA (medical history, level of IgE, eosinophils of blood and sputum, FEV1). The bacterial diversity indexes (Shannon, Chao1 and ACE) in the patients with BA were not differ from the control group (p>0.05). Conclusion. The results of the study indicate the differences in the oropharyngeal microbiota compositions of the healthy volunteers and patients with bronchial asthma. The relationship of the change in the bacterial composition to the main clinical and laboratory manifestations of the disease confirms their significance in the pathogenesis of BA. The study ofthe bacterial composition changes of the respiratory tract under the respiratory system diseases should be continued at further.

Keywords: 
заболевания органов дыхания
микробиота
бронхиальная астма
секвенирование 16SрPНК



It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Rogers G., Wesselingh S. Precision respiratory medicine and the microbiome // Lancet Respir. Med. – 2016; 4 (1): 73–82. DOI: 10.1016/S2213-2600(15)00476-2.
  2. Kåhrström C., Pariente N., Weiss U. Intestinal microbiota in health and disease // Nature. – 2016; 535 (7610): 47. DOI: 10.1038/535047a.
  3. Samuelson D., Welsh D., Shellito J. Regulation of lung immunity and host defense by the intestinal microbiota // Front. Microbiol. – 2015; 6: 1085. DOI: 10.3389/fmicb.2015.01085.
  4. Trompette A., Gollwitzer E. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis // Nature Medicine. – 2014; 20: 159–66. DOI: 10.1038/nm.3444.
  5. Ivashkin V., Zolnikova O., Potskherashvili N. et al. A correction of a gut microflora composition for the allergic bronchial asthma complex therapy // Italian J. Med. – 2018; 12: 260–4. DOI: 10.4081/itjm.2018.1040.
  6. Chung K. Airway microbial dysbiosis in asthmatic patients: A target for prevention and treatment? // Clin. Rev. Allergy Immunol. – 2018; 2: 1071–81. DOI: 10.1016/j.jaci.2017.02.004.
  7. Herbst T., Sichelstiel A., Schar C. et al. Dysregulation of allergic airway inflammation in the absence of microbial colonization // Am. J. Respir. Crit. Care Med. – 2011; 184 (2): 198–205. DOI: 10.1164/rccm.201010-1574OC.
  8. Ozdemir O. Microbial dysbiosis in allergic lower airway disease (asthma) // MO J. Immunol. – 2018; 6 (4): 129–32. DOI: 10.15406/moji.2018.06.00207.
  9. Hevia A., Milani C., López P. et al. Allergic Patients with Long-Term Asthma Display Low Levels of Bifidobacterium adolescentis // PLoS One. – 2016; 11 (2): e0147809. DOI: 10.1371/journal.pone.0147809.
  10. Anand S., Mande S. Diet, Microbiota and Gut-Lung Connection // Front. Microbiol. – 2018; 9: 2147. DOI: 10.3389/fmicb.2018.02147.
  11. Zhang J., Guo Z., Xue Z. et al. A phylofunctional core of gut microbiota in healthyyoung Chinese cohorts across lifestyles, geography and ethnicities // ISME J. – 2015; 9 (9): 1979–90. DOI: 10.1038/ismej.2015.11.
  12. Boutin S., Depner M., Stahl M. et al. A Comparison of Oropharyngeal Microbiota from Children with Asthma and Cystic Fibrosis // Mediators of Inflammation. – 2017; 2017: 5047403. DOI: 10.1155/2017/5047403.
  13. Park H., Shin J., Park S.-G. et al. Microbial Communities in the Upper Respiratory Tract of Patients with Asthma and Chronic Obstructive Pulmonary Disease // PLoS One. – 2014; 9 (10): e109710. DOI: 10.1371/journal.pone.0109710.
  14. Charlson E., Bittinger K., Haas A. et al. Topographical continuity of bacterial populations in the healthy human respiratory tract // Am. J. Respir. Crit. Care Med. – 2011; 184 (8): 957–63. DOI: 10.1164/rccm.201104-0655OC.
  15. Kang Y. Gut microbiota and allergy/asthma: From pathogenesis to new therapeutic strategies // Allergol. Immunopathol. – 2016; 3: 799–804. DOI: 10.1016/j.aller.2016.08.004.
  16. Ozdemir O. Microbial dysbiosis in allergic lower airway disease (asthma) // MO J. Immunol. – 2018; 6 (4): 129–32. DOI: 10.15406/moji.2018.06.00207.