HAC (Russian)
RSCI (Russian)
Ulrichsweb (Ulrich’s Periodicals Directory)
Scientific Indexing Services


DOI: https://doi.org/10.29296/25877305-2019-01-04

O. Papysheva(1), Candidate of Medical Sciences; G. Kotaish(1), Candidate of Medical Sciences; T. Mayatskaya(1); S. Sidorova(1); E. Tretyakova(1), E. Devyatova(2), Candidate of Medical Sciences 1-N.E. Bauman City Clinical Hospital Twenty-Nine, Moscow Healthcare Department 2-Peoples’ Friendship University of Russia, Moscow

The paper gives data on the leading aspects of the pathogenesis of gestational diabetes mellitus (GDM) in modern conditions. The obesity pandemic has led not only to an exponential increase in the incidence of GDM, but also to its earlier manifestation. Maintaining the state of metainflammation, insulin resistance (IR) in obesity is regarded as the main pathogenetic factor for GDM. In preconceptional IR-related pregnancy, there can be long-term dangerous consequences (including obesity, fatty hepatosis in the offspring) due to the mechanisms of epigenetic programming.

gestational diabetes mellitus
insulin resistance
epigenetic programming

  1. Dedov I.I., Krasnopol`skiy V.I., Suhih G.T. ot imeni rabochey gruppy. Rossiyskiy nacional`nyy konsensus «Gestacionnyy saharnyy diabet: diagnostika, lechenie, poslerodovoe nablyudenie» // Saharnyy diabet. – 2012; 4: 4–10. [Dedov I.I., Krasnopol'skij V.I., Suhih G.T. on behalf of the working group. Russian National Consensus Statement on gestational diabetes: diagnostics, treatment and postnatal care // Saharnyj Diabet. – 2012; 4: 4–10 (in Russ.)].
  2. Troshina E.A., Pokusaeva V.N., Andreeva V.N. Ozhirenie u zhenshhin. Pod red. akad. RAN G.A. Mel`nichenko, prof. N.K. Nikiforovskogo / M.: «Medicinskoe informacionnoe agentstvo», 2017; 272 c. [Troshina E.A., Pokusaeva V.N., Andreeva V.N. Obesity in women / acad. of RAS G.A. Melnichenko, prof. N.K. Nikiforovsky, eds. M.: «Medicinskoe informacionnoe agenstvo», 2017; 272 p. (in Russ.)]
  3. Kautzky-Willer A., Harreiter J., Bancher-Todesca D. et al. Gestational diabetes mellitus // Wien. Klin. Wochenschr. – 2016; 128 (Suppl. 2): 103–12. DOI: 10.1007/s00508-015-0941-1.
  4. Bardymova T.P., Berezina M.V., Mihaleva O.G. i dr. Ozhirenie i gestacionnyy saharnyy diabet // Sib. med. zhurn. (Irkutsk). – 2015; 4: 9–15 [Bardymova T.P., Berezina M.V., Mihaleva O.G. et al. Obesity and gestational diabetes mellitus // Sibirskij medicinskij zhurnal (Irkutsk). – 2015; 4: 9–15. (in Russ.)]
  5. Maslovskaya A.A. Osobennosti e`nergeticheskogo obmena u detey // Zhurnal GrGMU. – 2006; 1: 25–8 [Maslovskaja A.A. Specific features of energy metabolism in child // Zhurnal GrGMU. – 2006; 1: 25–8 (in Russ.)]
  6. Brown L., Rozance P., Bruce J. et al. Limited capacity for glucose oxidation in fetal sheep with intrauterine growth restriction // Am. J. Physiol. Regul. Integr Comp Physiol. – 2015; 309 (8): R920–8. DOI: 10.1152/ajpregu.00197.2015.
  7. Yamashita H., Yasuhi I, Fukuda M. et al. The association between maternal insulin resistance in mid-pregnancy and neonatal birthweight in uncomplicated pregnancies // Endocr. J. – 2014; 61 (10): 1019–24.
  8. Lar`kin D.M. Optimizaciya akusherskih i perinatal`nyh ishodov u pacientok s gestacionnym saharnym diabetom. Avtoref. dis. … kand. med. nauk. Ekaterinburg, 2016; 23 c. [Lar'kin D.M. Optimization of obstetric and perinatal outcomes in patients with gestational diabetes mellitus. Author's abstract, Candidate of Medical Sciences. Ekaterinburg, 2016; 23 p. (in Russ.)]
  9. Zhang B., Jin Z., Sun L. et al. Expression and correlation of sex hormone-binding globulin and insulin signal transduction and glucose transporter proteins in gestational diabetes mellitus placental tissue // Diabetes Res. Clin. Pract. – 2016; 119: 106–17. DOI: 10.1016/j.diabres.2016.07.003.
  10. Gordyunina S.V. Insulinorezistentnost` pri beremennosti (obzor literatury) // Probl. e`ndokrinol. – 2013; 5: 61–6 [Gordjunina S.V. Insulin resistance during pregnancy (a literature review) // Problemyj endokrinologii. – 2013; 5: 61–6 (in Russ.)]
  11. Rifas-Shiman S., Fleisch A., Hivert M. et al. First and second trimester gestational weight gains are most strongly associated with cord blood levels of hormones at delivery important for glycemic control and somatic growth // Metabolism. – 2017; 69: 112–9. DOI: 10.1016/j.metabol.2017.01.019.
  12. Perederyaeva E.B., Pshenichnikova T.B., Andreeva M.D. i dr. Patogeneticheskie mehanizmy razvitiya pree`klampsii u zhenshhin s metabolicheskim sindromom // Akusherstvo, ginekologiya i reprodukciya. – 2015; 9 (3): 54–65 [Perederjaeva E.B., Pshenichnikova T.B., Andreeva M.D. et al. The patogenetic mechanisms of development of preeclampsia in women with metabolic syndrome // Akusherstvo, ginekologija I reprodukcija. – 2015; 9 (3): 54–65 (in Russ.)]
  13. Powe C. Early pregnancy biochemical predictors of gestational diabetes mellitus // Curr. Diab. Rep. – 2017; 17 (2): 12. DOI: 10.1007/s11892-017-0834-y.
  14. Bozkurt L., Göbl C., Pfligl L. et al. Pathophysiological characteristics and effect of obesity in women with early and late manifestation of gestational diabetes diagnosed by the International Association of Diabetes and Pregnancy Study Groups criteria // J. Clin. Endocrinol. Metab. – 2015; 100 (3): 1113–20. DOI: 10.1210/jc.2014-4-55.
  15. Friedman J. Obesity and gestational diabetes mellitus pathways for programming in mouse, monkey, and man-where Do We go next? The 2014 Norbert Freinkel Award Lecture // Diabetes care. – 2015; 38 (8): 1402–11. DOI: 10.2337/dc15-0628.
  16. Kornienko E.A., Netrebenko O.K. Ozhirenie i kishechnaya mikrobiota: sovremennaya koncepciya vzaimosvyazi // Pediatriya. – 2012; 91 (2): 111–21 [Kornienko E.A., Netrebenko O.K. The obesity and intestinal microbiota: a modern concept of interrelation // Pediatrija. – 2012; 91 (2): 111–21 (in Russ.)]
  17. Collins K., Oehmen R., Mehta S. Effect of obesity on neonatal hypoglycaemia in mothers with gestational diabetes: A comparative study // Aust. N. Z. J. Obstet. Gynaecol. – 2017; 13. DOI: 10. 1111/ajo.12717.
  18. Moen G., Sommer C., Prasad R. et al. Mechanisms in endocrinology: Epigenetic modifications and gestational diabetes: a systematic review of published literature // Eur. J. Endocrinol. – 2017; 176 (5): R247–67. DOI: 10.1530/EJE-16-1017.
  19. Regnault N., Salanave B., Castetbon K. et al. Diabètegestationnelen France en 2012: dépistage, prévalenceetmodalités de priseen charge pendant la grossese // Bull. Epidémiol. Hebd. – 2016; 9: 164–72.
  20. Reichelt A., Weinert L., Mastella L. et al. Clinical characteristics of women with gestational diabetes – comparison of two cohorts enrolled 20 ears apart in southern Brazil // Sao Paulo Med. – 2017; 135 (4): 376–82. DOI: 10. 1590/1516-3180.2016.0332190317.
  21. Hromylev A.V. Metabolicheskiy sindrom i beremennost` // Ozhirenie i metabolizm. – 2014; 2: 3–7 [Hromylev A.V. Metabolic syndrome and pregnancy // Ozhirenie i metabolizm. – 2014; 2: 3–7 (in Russ.)]
  22. Litvinova A.S., Kirienkova E.V., Mazunin I.O. i dr. Patogenez insulinorezistentnosti pri metabolicheskom ozhirenii // Biomed. himiya. – 2015; 61 (1): 70–82 [Litvinova A.S., Kirienkova E.V., Mazunin I.O. et al. Insulin resistance pathogenesis in metabolic obesity // Biomedicinskaja himija. – 2015; 61 (1): 70–82 (in Russ.)]
  23. Prattichizzo F., De Nigris V., Spiga R. et al. Inflammageing and metaflammation: the yin and yang of type 2 diabetes // Ageign Res. Rev. – 2017; 41: 1–17. DOI: 10.1016/j.arr.2017.10.003.
  24. Wang G., Cho K., Uhm M. et al. Otopetrin 1 protects mice from obesity-associated metabolic dysfunction through attenuating adipose tissue inflammation // Diabetes. – 2014; 63 (4): 1340–52. DOI: 10.2337/db13-1139.
  25. Deopurkar R., Ghanim H., Friedman J. et al. Differential effects of cream, glucose, and orange juice on inflammation, endotoxin, and the expression of Toll-like receptor-4 and suppressor of cytokine signaling-3 // Diabetes Care. – 2010; 33 (5): 991–7. DOI: 10.2337/dc09-1630.
  26. DiSpirito J., Mathis D. Immunological contributions to adipose tissue homeostasis // Semin Immunol. – 2015; 27 (5): 315–21. DOI: 10.1016/j.smim.2015.10.005.
  27. Feng H., Su R., Song Y. et al. Positive Correlation between Enhanced Expression of TLR4/MyD88/NF-κB with Insulin Resistance in Placentae of Gestational Diabetes Mellitus // PLoS One. – 2016; 11 (6): e0157185. DOI: 10.1371/journal.pone.0157185. eCollection 2016.
  28. Yanai S., Tokuhara D., Tachibana D. et al. Diabetic pregnancy activates the innate immune response through TLR5 or TLR1/2 on neonatal monocyte // J. Reprod. Immunol. – 2016; 117: 17–23. DOI: 10.1016/j.jri.2016.06.007.
  29. Kuzmicki M., Telejko B., Wawrusiewicz-Kurylonek N. et al. The expression of genes involved in NF-κB activation in peripheral blood mononuclear cells of patients with gestational diabetes // Eur. J. Endocrinol. – 2013; 168 (3): 419–27. DOI: 10.1530/EJE-12-0654.
  30. Karamali M., Dadkhah F., Sadrkhanlou M. et al. Effects of probiotic supplementation on glycaemic control and lipid profiles in gestational diabetes: A randomized, double-blind, placebo-controlled trial // Diabetes Metab. – 2016; 42 (4): 234–41. DOI: 10.1016/j.diabet.2016.04.009.
  31. Schliefsteiner C., Hirschmugl B., Kopp S. et al. Maternal gestational diabetes mellitus increases placental and foetal lipoprotein-associated phospholipase A2which might exert protective fonctions against oxidative stress // Sci. Rep. – 2017; 7 (1): 12628. DOI: 10.1038/s41598-017-13051-6.
  32. Jafarnejad S., Saremi S., Jafarnejad F. et al. Effect of a multispecies probiotic mixture on glycemic control and inflammatory status in women with gestational diabetes: a randomized controlled clinical trial // J. Nutr. Metab. – 2016; 2016: 5190846. DOI: 10.1155/2016/5190846.
  33. Wickens K., Barthow C., Murphy R. et al. Early pregnancy probiotic supplementation with Lactobacillus rhamnosus HN001 may reduce the prevalence of gestational diabetes mellitus: a randomized controlled trial // Br. J. Nutr. – 2017; 117 (6): 804–13. DOI: 10.1017/S0007114517000289.
  34. Dunlop A., Mulle J., Ferranti E. et al. Maternal Microbiome and pregnancy outcomes thatimpact infant healt: a review // Adv Neonatal Care. – 2015; 15 (6): 377–85.
  35. Indrio F., Martini S., Francavilla R. et al. Epigenetic matters: the link between early nutrition, microbiome and long-term healt development // Front Pediatr. – 2017; 5: 178. DOI: 10.3389/fped.2017.00178.
  36. Haertle L., El Hajj N., Dittrich M.et al. Epigenetic signatures of gestational diabetes mellitus on cord blood methylation // Clin. Epigenetics. – 2017; 9: 28. DOI: 10.1186/s13148-017-0329-3.
  37. Wu P., Farrell W., Haworth K. et al. Maternal genome-wide DNA methylation profiling in gestational diabetes shows distinctive disease-associated changes relative to matched healthy pregnancies // Epigenetics. – 2018; 13 (2): 122–8. DOI: 10.1080/15592294.2016.1166321.
  38. Lindsay K., Brennan L., Kennelly M. et al. Impact of probiotics in women with gestational diabetes mellitus on metabolic health: a randomized controlled trial // Am. J. Obstet. Gynecol. – 2015; 212 (4): 496.e1-11. DOI: 10.1016/j.ajog.2015.02.008.
  39. Karamali M., Nasiri N., TaghaviShavazi N. et al. The effects of symbiotic supplementation on pregnancy outcomes in gestational diabetes // Probiotics Antimicrob. Proteins. – 2018; 10 (3): 496–503. DOI: 10.1007/s12602-017-9313-7.
  40. Taylor B., Woodfall G., Sheedy K. et al. Effect of probiotics on metabolic oucomes in pregnant women with gestational diabetes: a systematic review and meta-analysis of randomized controlled trials // Nutrients. – 2017; 9 (5): Pii: E461. DOI: 10.3390/nu9050461.