Nutritional aspects of a child’s sleep

DOI: https://doi.org/10.29296/25877305-2023-09-02
Issue: 
9
Year: 
2023

Professor I. Kelmanson, MD
V.A. Almazov National Medical Research Center, St. Petersburg, Russia
St. Petersburg State Institute of Psychology and Social Work

Of great practical interest is the possible impact of diet and availability of a number of nutrients on the quality of sleep and the risk of its disorders in children. The review presents information on the relationship of sleep characteristics to the intake of the most important macro- and micronutrients into the body. It discusses the positive effect of amino acids, primarily tryptophan and its derivatives: serotonin and melatonin, on sleep indicators. The possible effects of fats and carbohydrates on the quality and structure of sleep are considered. The significance of the availability of micronutrients, including magnesium, iron, and copper, is analyzed. The role of group B vitamins and vitamin D in improving the quality of a child's sleep is discussed. There is information on the possible pathophysiological and pathochemical mechanisms that form a basis for the relationship of sleep characteristics to the intake of a number of nutrients into the body. The role of breast milk in ensuring the natural ontogenesis of a child's sleep and in improving the quality of sleep is separately considered.

Keywords: 
pediatrics
feeding
nutrients
nutrition
sleep.



References: 
  1. Кельмансон И.А. Клиническая сомнология детского возраста: учебное пособие. СПб: СпецЛит, 2021 [Kelmanson I.A. Pediatric clinical somnology: guide book. SPb: SpecLit, 2021(in Russ.)].
  2. Grandner M.A., Jackson N., Gerstner J.R. et al. Sleep symptoms associated with intake of specific dietary nutrients. J Sleep Res. 2014; 23 (1): 22–34. DOI: 10.1111/jsr.12084
  3. Van der Does A.J. The mood-lowering effect of tryptophan depletion: possible explanation for discrepant findings. Arch Gen Psychiatry. 2001; 58 (2): 200–2. DOI: 10.1001/archpsyc.58.2.200
  4. Booij L., Van der Does A.J.W., Haffmans P.M.J. et al. Acute tryptophan depletion in depressed patients treated with a selective serotonin–noradrenalin reuptake inhibitor: Augmentation of antidepressant response? J Affect Disord. 2005; 86 (2): 305–11. DOI: 10.1016/j.jad.2005.01.012
  5. Landolt H.P., Wehrle R. Antagonism of serotonergic 5-HT2A/2C receptors: mutual improvement of sleep, cognition and mood? Eur J Neurosci. 2009; 29 (9): 1795–809. DOI: 10.1111/j.1460-9568.2009.06718.x
  6. Monti J.M., Jantos H. The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking. Prog Brain Res. 2008; 172: 625–46. DOI: 10.1016/S0079-6123(08)00929-1
  7. Gutiérrez C.I., Urbina M., Obregion F. et al. Characterization of tryptophan high affinity transport system in pinealocytes of the rat. Day-night modulation. Amino Acids. 2003; 25 (1): 95–105. DOI: 10.1007/s00726-002-0353-1
  8. Silber B.Y., Schmitt J.A.J. Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci Biobehav Rev. 2010; 34 (3): 387–407. DOI: 10.1016/j.neubiorev.2009.08.005
  9. Hunt A.E., Al-Ghoul W.M., Gillette M.U. et al. Activation of MT2 melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol Cell Physiol. 2001; 280 (1): C110–8. DOI: 10.1152/ajpcell.2001.280.1.C110
  10. Ouichou A., Pévet P. Implication of Tryptophan in the Stimulatory Effect of Delta-Sleep-lnducing Peptide on Indole Secretion from Perifused Rat Pineal Glands. Neurosignals. 1992; 1 (2): 78–87. DOI: 10.1159/000109313
  11. Mateos S.S., Sánchez C.L., Paredes S.D. et al. Circadian Levels of Serotonin in Plasma and Brain after Oral Administration of Tryptophan in Rats. Basic Clin Pharmacol Toxicol. 2009; 104 (1): 52–9. DOI: 10.1111/j.1742-7843.2008.00333.x.
  12. Sarwar G. Influence of tryptophan supplementation of soy-based infant formulas on protein quality and on blood and brain tryptophan and brain serotonin in the rat model. Plant Foods Hum Nutr. 2001; 56 (3): 275–84. DOI: 10.1023/A:1011121111899
  13. Steinberg L.A., O'Connell N.C., Hatch T.F. et al. Tryptophan Intake Influences Infants' Sleep Latency. J Nutr. 1992; 122 (9): 1781–91. DOI: 10.1093/jn/122.9.1781
  14. Harada T. Effects of evening light conditions on salivary melatonin of Japanese junior high school students. J Circadian Rhythms. 2004; 2 (1): 2–4. DOI: 10.1186/1740-3391-2-4
  15. Aparicio S., Garau C., Esteban S. et al. Chrononutrition: Use of dissociated day/night infant milk formulas to improve the development of the wake–sleep rhythms. Effects of tryptophan. Nutr Neurosci. 2007; 10 (3-4): 137–43. DOI: 10.1080/10284150701455916
  16. Garrido M., Paredes S.D., Cubero J. et al. Jerte Valley Cherry-Enriched Diets Improve Nocturnal Rest and Increase 6-Sulfatoxymelatonin and Total Antioxidant Capacity in the Urine of Middle-Aged and Elderly Humans. J Gerontol A Biol Sci Med Sci. 2010; 65 (9): 909–14. DOI: 10.1093/gerona/glq099
  17. Lin H.-H., Tsai P.-S., Fang S.-C. Et al. Effect of Kiwifruit Consumption on Sleep Quality in Adults with Sleep Problems. Asia Pac J Clin Nutr. 2011; 20 (2): 169–74.
  18. Bubenik G.A. REVIEW: Gastrointestinal Melatonin: Localization, Function, and Clinical Relevance. Dig Dis Sci. 2002; 47 (10): 2336–48. DOI: 10.1023/A:1020107915919
  19. Bruni O., Ferri R., Miano S. et al. L-5-Hydroxytryptophan treatment of sleep terrors in children. Eur J Pediatr. 2004; 163 (7): 402–7. DOI: 10.1007/s00431-004-1444-7
  20. Irmisch G., Schläfke D., Gierow W. et al. Fatty acids and sleep in depressed inpatients. Prostaglandins Leukot Essen Fatty Acids. 2007; 76 (1): 1–7. DOI: 10.1016/j.plefa.2006.09.001
  21. Shi Z., McEvoy M., Luu J. Et al. Dietary fat and sleep duration in Chinese men and women. Int J Obes (Lond). 2008; 32 (12): 1835–40. DOI: 10.1038/ijo.2008.191
  22. Santana A.A., Pimentel G.D., Romualdo M. et al. Sleep duration in elderly obese patients correlated negatively with intake fatty. Lipids Health Dis. 2012; 11 (1): 99. DOI: 10.1186/1476-511X-11-99
  23. Montgomery P., Burton J.R., Sewell R.P. et al. Fatty acids and sleep in UK children: subjective and pilot objective sleep results from the DOLAB study – a randomized controlled trial. J Sleep Res. 2014; 23 (4): 364–88. DOI: 10.1111/jsr.12135
  24. Nehme P., Marqueze E.C., Ulhôa M. et al. Effects of a carbohydrate-enriched night meal on sleepiness and sleep duration in night workers: A double-blind intervention. Chronobiol Int. 2014; 31 (4): 453–60. DOI: 10.3109/07420528.2013.821478
  25. Jalilolghadr S., Afaghi A., O'Connor H. et al. Effect of low and high glycaemic index drink on sleep pattern in children. J Pak Med Assoc. 2011; 61 (6): 533–6.
  26. Vlahoyiannis A., Giannaki C.D., Sakkas G.K. et al. A Systematic Review, Meta-Analysis and Meta-Regression on the Effects of Carbohydrates on Sleep. Nutrients. 2021; 13 (4): 1283. DOI: 10.3390/nu13041283
  27. Dockray G.J. Cholecystokinin and gut–brain signalling. Regul Pept. 2009; 155 (1): 6–10. DOI: 10.1016/j.regpep.2009.03.015
  28. Wurtman R.J., Wurtman J.J., Regan M.M. et al. Effects of normal meals rich in carbohydrates or proteins on plasma tryptophan and tyrosine ratios. Am J Clin Nutr. 2003; 77 (1): 128–32. DOI: 10.1093/ajcn/77.1.128
  29. Torshin I.Y., Gromova O. Magnesium and pyridoxine: fundamental studies and clinical practice. New York: Nova Science Publishers, 2009.
  30. Vink R. Magnesium in the CNS: recent advances and developments. Magnes Res. 2016; 29 (3): 95–101. DOI: 10.1684/mrh.2016.0408
  31. Nielsen F.H. Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes Res. 2010; 23 (4): 158–68. DOI: 10.1684/mrh.2010.0220
  32. Dralle D, Bödeker RH. Serum magnesium level and sleep behavior of newborn infants. Eur J Pediatr. 1980; 134 (3): 239–43. DOI: 10.1007/BF00441479
  33. Black B., Holditch-Davis D., Schwartz T. et al. Effects of antenatal magnesium sulfate and corticosteroid therapy on sleep states of preterm infants. Res Nurs Health. 2006; 29 (4): 269–80. DOI: 10.1002/nur.20141
  34. Hornyak M., Voderholzer U., Hohagen F. et al. Magnesium Therapy for Periodic Leg Movements-related Insomnia and Restless Legs Syndrome: An Open Pilot Study. Sleep. 1998; 21 (5): 501–5. DOI: 10.1093/sleep/21.5.501
  35. Zadeh S.S., Begum K. Comparison of nutrient intake by sleep status in selected adults in Mysore, India. Nutr Res Pract. 2011; 5 (3): 230–5. DOI: 10.4162/nrp.2011.5.3.230
  36. Kordas K., Siegel E.H., Olney D.K. et al. The effects of iron and/or zinc supplementation on maternal reports of sleep in infants from Nepal and Zanzibar. J Dev Behav Pediatr. 2009; 30 (2): 131–9. DOI: 10.1097/DBP.0b013e31819e6a48
  37. Peirano P., Algarin C., Garrido M. et al. Iron-Deficiency Anemia is Associated with Altered Characteristics of Sleep Spindles in NREM Sleep in Infancy. Neurochem Res. 2007; 32 (10): 1665–72. DOI: 10.1007/s11064-007-9396-8
  38. Simakajornboon N., Gozal D., Vlasic V. et al. Periodic Limb Movements in Sleep and Iron Status in Children. Sleep. 2003; 26 (6): 735–8. DOI: 10.1093/sleep/26.6.735
  39. Peirano P.D., Algarin C.R., Garrido M.I. et al. Iron Deficiency Anemia in Infancy Is Associated with Altered Temporal Organization of Sleep States in Childhood. Pediatr Res. 2007; 62 (6): 715–9. DOI: 10.1203/PDR.0b013e3181586aef
  40. Beard J. Iron Deficiency Alters Brain Development and Functioning. J Nutr. 2003; 133 (5): 1468S–72S. DOI: 10.1093/jn/133.5.1468S
  41. Sato-Mito N., Sasaki S., Murakami K. et al. The midpoint of sleep is associated with dietary intake and dietary behavior among young Japanese women. Sleep Med. 2011; 12 (3): 289–94. DOI: 10.1016/j.sleep.2010.09.012
  42. Ji X., Liu J. Associations between Blood Zinc Concentrations and Sleep Quality in Childhood: A Cohort Study. Nutrients. 2015; 7 (7): 5684–96. DOI: 10.3390/nu7075247
  43. Song C.-H., Kim Y.-H., Jung K.-I. Associations of Zinc and Copper Levels in Serum and Hair with Sleep Duration in Adult Women. Biol Trace Elem Res. 2012; 149 (1): 16–21. DOI: 10.1007/s12011-012-9398-5
  44. Luojus M.K., Lehto S.M., Tolmunen T. et al. Serum copper, zinc and high-sensitivity C-reactive protein in short and long sleep duration in ageing men. J Trace Elem Med Biol. 2015; 32: 177–82. DOI: 10.1016/j.jtemb.2015.07.008.
  45. Ikeda M., Azuma S., Inoue S. Vitamin B12 enhances GABA content but reduces glutamate content in the rat suprachiasmatic nucleus. Am J Physiol. 1997; 273 (1): R359–R63. DOI: 10.1152/ajpregu.1997.273.1.R359
  46. Chan P., Huang T.-Y., Chen Y.-J. et al. Randomized, Double-Blind, Placebo-Controlled Study of the Safety and Efficacy of Vitamin B Complex in the Treatment of Nocturnal Leg Cramps in Elderly Patients with Hypertension. J Clin Pharmacol. 1998; 38 (12): 1151–4. DOI: 10.1177/009127009803801210.
  47. Beydoun M.A., Gamaldo A.A., Canas J.A. et al. Serum Nutritional Biomarkers and Their Associations with Sleep among US Adults in Recent National Surveys. PLoS One. 2014; 9 (8): e103490. DOI: 10.1371/journal.pone.0103490
  48. McCarty D.E., Chesson Jr. A.L., Jain S.K. et al. The link between vitamin D metabolism and sleep medicine. Sleep Med Rev. 2014; 18 (4): 311–9. DOI: 10.1016/j.smrv.2013.07.001
  49. Karra M.V., Kirksey A. Variation in Zinc, Calcium, and Magnesium Concentrations of Human Milk within a 24-Hour Period from 1 to 6 Months of Lactation. J Pediatr Gastroenterol Nutr. 1988; 7 (1): 100–6. DOI: 10.1097/00005176-198801000-00019
  50. Sánchez C.L., Cubero J., Sánchez J. et al. The possible role of human milk nucleotides as sleep inducers. Nutr Neurosci. 2009; 12 (1): 2–8. DOI: 10.1179/147683009X388922
  51. Cohen Engler A., Hadash A., Shehadeh N. et al. Breastfeeding may improve nocturnal sleep and reduce infantile colic: Potential role of breast milk melatonin. Eur J Pediatr. 2012; 171 (4): 729–32. DOI: 10.1007/s00431-011-1659-3