АДИПОНЕКТИН: БИОЛОГИЧЕСКИЕ И ПАТОФИЗИОЛОГИЧЕСКИЕ ЭФФЕКТЫ

А. Пашенцева, кандидат медицинских наук,

А. Вербовой, доктор медицинских наук, профессор,

Л. Шаронова, кандидат медицинских наук

Самарский государственный медицинский университет

E-mail: a-pashentseva@yandex.ru

Обсуждаются современные представления о биологических эффектах адипонектина, рассматривается его роль в развитии инсулинорезистентности, атеросклероза и сердечно-сосудистых заболеваний.

Ключевые слова: эндокринология, адипонектин, инсулинорезистентность, сахарный диабет типа 2, атеросклероз, сердечно-сосудистые заболевания.

Распространенность в мире ожирения и связанных с ним метаболических нарушений и заболеваний в последние годы достигла эпидемических размеров [1]. По статистике вОЗ, около 1,4 млрд людей старше 20 лет имеют избыточную массу тела (МТ), и из них >200 млн мужчин и около 300 млн женщин страдают ожирением. В 2010 г. число детей старше 5 лет с избыточной МТ составило >40 млн, причем в развивающихся странах — около 35 млн, а в развитых — 8 млн [2]. Согласно отчету вОЗ за 2010 г., в США 78 млн (36,7%) взрослых людей и 12,5 млн (16,9%) детей в возрасте 2—19 лет страдали ожирением.

В России нет четкой официальной статистики, касающейся числа лиц с избыточной МТ и ожирением. По данным выборочных исследований российских ученых, в настоящее время не менее 60% трудоспособного населения нашей страны имеют избыточную МТ и около 30% — ожирение [3].

Вместе с ожирением неуклонно возрастает частота связанных с ним заболеваний: сахарного диабета типа 2 (СД2), артериальной гипертензии (АГ), ишемической болезни сердца (ИБС), атеросклероза, онкологических заболеваний и др. В 2002 г. заболевания, обусловленные ожирением, были зарегистрированы у 115 млн человек. Установлено, что средняя продолжительность жизни больных ожирением на 8-10 лет короче, чем у людей с нормальной массой тела.

Учитывая глобальную эпидемию СД2 и ожирения и их тесную взаимосвязь, некоторые исследователи даже предложили термин DiObesity, или «диожирение» [4]. Высокая социальная значимость 2 этих заболеваний обосновывает детальное изучение строения и функций жировой ткани при нарушениях углеводного обмена.

Согласно данным исследований последних лет, жировая ткань является эндокринной железой, секретирующей значительное количество гормонов и биологически активных пептидов: лептин, резистин, фактор некроза опухоли-β, адипонектин, висфатин, интерлейкин-6, ангиотензиноген,

ингибитор 1-го типа активатора плазминогена и др. Имея паракринный, аутокринный и эндокринный механизмы действия, адипокины влияют на метаболизм липидов, гомеостаз глюкозы, процессы воспаления, свертывания, иммунитета, ангиогенеза, образования костной ткани, опухолевого роста.

В последнее время много внимания уделяется одному из адипокинов, открытому в 1995 г., — адипонектину, известному также как AdipoQ и ACRP30 [5]. Он представляет собой гликопротеин, имеющий различающиеся по молекулярной массе и пространственной структуре фракции (тримеры, гексамеры и мультимеры). Изоформа с высокой молекулярной массой — наиболее активная форма гормона ввиду высокого связывающего сродства к его рецепторам. Установлено, что адипонектин — специфический адипокин, т.е. он синтезируется только адипоцитами, а его экспрессия в подкожном жире выше, чем в висцеральном [6]. Выявлены различия показателей гормона по полу: у женщин его содержание на 40% выше, чем у мужчин, что, возможно, объясняется разными количествами эстрогенов и андрогенов у мужчин и женщин [7].

Ү. Маtsuzawa и соавт. (2003) доказали, что экспрессия, секреция и плазменный уровень адипонектина снижаются при ожирении и (или) абдоминальном распределении жировой ткани [8]. В эксперименте адипонектин тормозит дифференцировку преадипоцитов, что подтверждает его влияние на регуляцию жировой массы. Плазменная концентрация адипонектина обратно пропорциональна массе жировой ткани и индексу массы тела (ИМТ). Имеются экспериментальные доказательства регуляции экспрессии генов адипонектина тиреоидными гормонами [9].

Адипонектин повышает аппетит и снижает расход энергии при голодании путем воздействия на центральную нервную систему (ЦНС) [10]. Весьма вероятно, что адипонектин действует на ЦНС, давая периферические эффекты путем активации симпатической нервной системы. К тому же установлено, что эффект адипонектина при снижении функциональной активности лептина сохраняется дольше, что свидетельствует о наличии антагонистических отношений между этими 2 гормонами.

Имеются сообщения о положительном влиянии адипонектина на углеводный обмен в связи с действием на рецепторы GLUT4 и повышением усвоения глюкозы мышечными клетками, а также увеличением синтеза гликогена [11].

У пациентов с СД2 уровень адипонектина ниже, чем у лиц без нарушений углеводного обмена. В исследовании А.Ю. Майорова (2011) уровень адипонектина у больных СД2 был ниже, чем у здоровых лиц. Автор обнаружил прямую корреляцию уровня адипонектина с коэффициентом утилизации глюкозы (М-индексом) и слабую обратную корреляцию — с окружностью талии и отношением окружность талии/окружность бедер [12]. В популяционном исследовании Ріта Іпдіапѕ показано, что у лиц с высокими уровнями адипонектина меньше вероятность развития СД2, чем у людей с низкими его концентрациями [13].

Американские ученые на основании метаанализа 13 проспективных исследований (14 598 обследованных и 2623 случая развития СД2) установили, что высокие концентрации адипонектина в крови коррелируют с низким риском развития СД2 [14].

В ряде зарубежных исследований изучались уровни адипокинов в крови, в том числе и адипонектина, при разной степени нарушений углеводного обмена [15, 16]. Было показано,

что при нормальной толерантности к глюкозе концентрации адипонектина высокие, при нарушенной — сниженные, а при СД2 — достоверно наиболее низкие.

А.Ф. Вербовой и соавт. (2011) выявили достоверное снижение уровня адипонектина у пациентов и с СД2, и с ИБС, и при сочетании этих заболеваний. Кроме того, они обнаружили отрицательные взаимосвязи между уровнями адипонектина и общего холестерина (ОХС), триглицеридов (ТГ), липопротеидов низкой плотности (ЛПНП) и коэффициентом атерогенности, а также положительную корреляцию между содержанием в крови этого адипокина и липопротеидов высокой плотности (ЛПВП). Авторы предположили, что адипонектин принимает участие в развитии атерогенной дислипидемии у пациентов с ИБС и СД2 [17].

В.А. Петеркова, А.В. Косыгина, О.В. Васюкова (2008) изучали содержание адипонектина в сыворотке крови при ожирении у детей и подростков. Обнаружено, что уровень адипонектина отрицательно коррелирует с окружностью талии и ИМТ. У детей с ожирением и инсулинорезистентностью (ИР) концентрация адипонектина в сыворотке крови ниже, чем у детей с нормальными показателями базального и постпрандиального инсулина и индексом ИР HOMA-IR. Обнаружены корреляции уровня адипонектина с показателями ЛПНП и ТГ. Эти данные позволяют предположить, что снижение уровня адипонектина является связующим звеном между ожирением, ИР и атерогенными сдвигами в сыворотке крови уже в детском возрасте и может использоваться как дополнительный биомаркер для выявления группы высокого риска развития осложнений, ассоциированных с ожирением [18].

А.Ф. Вербовой и соавт. (2014) приводят данные обследования женщин с гипотиреозом, у которых ИМТ соответствовал избыточной МТ. Было установлено снижение уровня адипонектина в сравнении с таковым в контрольных группах женщин в возрасте 20—40 лет и старше 40 лет [19]. Н.И. Вербовая и соавт. (2014) выявили существенное снижение концентрации адипонектина у пациенток с гипотиреозом в сравнении с таковой в контроле. Указанные авторы приводят данные о положительной корреляции уровня адипонектина с содержанием ЛПВП и отрицательной — с ОХС, ТГ, ЛПНП и коэффициентом атерогенности. Таким образом, снижение уровня адипонектина может играть роль в развитии атерогенной дислипидемии у больных гипотиреозом [20].

Адипонектин участвует в разных клеточных механизмах антиатерогенной защиты. Когда агрессивные факторы (окисленные ЛПНП, химические вещества или механическое воздействие) повреждают эндотелиальный барьер, адипонектин накапливается в субэндотелиальном пространстве сосудистой стенки путем связывания с субэндотелиальным коллагеном. Далее адипонектин проявляет антиатерогенные свойства в сосудистой стенке, подавляя связывание моноцитов с клетками эндотелия путем ингибирования экспрессии молекул адгезии VCAM-1, ICAM-1 и Е-селектина вследствие подавления активации NF-kB. Адипонектин уменьшает также индуцированную факторами роста пролиферацию клеток гладкой мускулатуры сосудистой стенки путем ингибирования процессинга MAP-киназы [21].

Гипоадипонектинемия приводит к дисфункции эндотелия [22] вследствие стимуляции продукции молекул адгезии в эндотелиальных клетках и пролиферации гладкомышечных клеток [23]. Освобождение оксида азота из эндотелия, вероят-

но, стимулируется связыванием адипонектина с рецепторами на поверхности эндотелия [24]. Оксид азота ингибирует агрегацию тромбоцитов, адгезию лейкоцитов к эндотелиальным клеткам и пролиферацию гладкомышечных клеток. В то же время уменьшается окислительный стресс в клетках эндотелия. Все эти эффекты предотвращают негативное действие эндотелина на сердечно-сосудистую систему при эндотелиальной дисфункции [25].

А.С. Осина (2010), изучая эндотелиальную дисфункцию у больных СД2, установила, что одной из причин дисфункции эндотелия является гипоадипонектинемия [26].

Низкий уровень адипонектина в последнее время рассматривается как независимый предиктор развития раннего атеросклероза у пациентов с ожирением. Тем не менее при атеросклерозе эта взаимосвязь может стать слабее, особенно при наличии условий, вызывающих гипоксию (сердечная или почечная недостаточность). В некоторых исследованиях показано, что высокие уровни адипонектина связаны с повышением сердечно-сосудистой смертности у пациентов с ИБС [27]. Таким образом, гипоадипонектинемия может иметь клиническое значение на ранних этапах атерогенеза, но на более поздних стадиях заболевания ее роль в качестве биомаркера остается спорной.

Некоторые исследователи объясняют высокие уровни адипонектина у пожилых пациентов с ИБС возможным влиянием других гормональных факторов. Так, S. Wannamethee и соавт. (2011) сделали вывод, что положительная корреляция между высокими плазменными концентрациями адипонектина, риском развития ИБС и смертностью может быть (по крайней мере частично) опосредована повышением уровня мозгового натрийуретического пептида [28]. Возможно, некоторое компенсаторное повышение уровня адипонектина у пациентов с длительными метаболическими нарушениями не сопровождается дополнительным протективным действием, а лишь косвенно подтверждает тяжесть существующих заболеваний.

Адипонектин способен также препятствовать образованию свободных радикалов в культуре клеток эндотелия [29]. Как показали исследования in vitro и in vivo, адипонектин действует непосредственно на кардиомиоциты, защищая сердце от ишемии, гипертрофии, кардиомиопатии и систолической дисфункции [30]. В частности, к кардиопротективным эффектам адипонектина относятся его способность подавлять апоптоз, оксидативный стресс и воспаление в кардиомиоцитах [31]. Т. Pischon и соавт. (2005) обследовали 745 мужчин с СД2, не имевших ИБС на момент начала наблюдения. В течение 5 лет 89 из них был поставлен диагноз ИБС [32]. Установлено, что уровень адипонектина у этих пациентов имел обратную корреляцию с наличием у них ИБС независимо от приема ацетилсалициловой кислоты, семейного анамнеза по инфаркту миокарда, потребления алкоголя, использования инсулина, длительности СД, уровня гликированного гемоглобина, ТГ, С-реактивного белка. Авторы заключают, что у мужчин с СД2 высокий уровень адипонектина снижает риск ИБС. Высказано предположение, что этот эффект может реализоваться воздействием на ЛПНП.

В работе Н.В. Морковских (2010), посвященной изучению прогностических факторов риска развития сердечнососудистых осложнений у пациентов с СД2, установлено снижение уровня адипонектина у мужчин с СД2, причем в большей степени — у больных, перенесших инфаркт миокарда и инсульт. Автор показал, что уровень адипонектина плазмы у

мужчин с диабетом является наиболее информативным прогностическим маркером риска развития сердечно-сосудистых осложнений [33].

Возможно участие гипоадипонектинемии в развитии гипертрофии левого желудочка (ЛЖ). Адипонектин может способствовать ремоделированию кардиомиоцитов. Концентрическая гипертрофия миокарда и диастолическая дисфункция часто встречаются при СД, АГ и других заболеваниях. Низкий уровень адипонектина может вносить вклад в развитие гипертрофии сердца, что предполагает возможность его использования для лечения этой патологии. Способность ослаблять степень гипертрофии может реализовываться стимуляцией сигнального пути, зависимого от АМФ-киназы в кардиомиоцитах. АМФкиназа – стресс-активируемая протеинкиназа, участвующая в регуляции энергетического и метаболического гомеостаза. Активность АМФ-киназы увеличивается при острых и хронических стрессах, например, при гипоксии, ишемии. Адипонектин способен стимулировать АМФкиназные пути в эндотелиальных клетках [34]. По данным Е.В. Митрошиной (2011), у мужчин с дебютом ожирения в пубертатном периоде при уровне адипонектина <10 мкг/ мл достоверно увеличивались масса миокарда (ММ) ЛЖ, а также индекс ММ ЛЖ относительно роста по сравнению с таковыми у людей с более высокими концентрациями адипонектина в крови. У юношей с пубертатным ожирением была выявлена обратная взаимосвязь между толщиной задней стенки ЛЖ и уровнем адипонектина [35]. Это подтверждается и результатами эксперимента, свидетельствующими о том, что гипоадипонектинемия при нагрузке сопровождается гипертрофией ЛЖ. Введение адипонектина предотвращало гипертрофию ЛЖ [36].

И.Ю. Капралова и соавт. (2014), изучив эхокардиографические показатели у больных гипотиреозом, выявили гипертрофию ЛЖ и левого предсердия, диастолическую дисфункцию и установили, что гипоадипонектинемия влияет на ремоделирование миокарда при этом заболевании [37].

Таким образом, адипонектин может играть значительную роль в развитии ИР, метаболического синдрома и СД2. Исходя из этого, ученые предполагают возможную роль адипонектина в предупреждении и лечении заболеваний, развивающихся на основе ИР, в частности СД2. Одним из вариантов подхода к терапии может быть создание и использование фармакологических препаратов, повышающих уровень циркулирующего в крови адипонектина или действующих как агонисты рецепторов этого адипокина, что усиливает его протективное действие на организм.

Литература

- 1. Дедов И.И. Проблема ожирения: от синдрома к заболеванию // Ожирение и метаболизм. 2006; 1 (6): 2—4.
- 2. Профилактика сахарного диабета. Доклад ВОЗ. Пер. с англ. / М.: Медицина, 1995; 136 с. (Серия технических докладов ВОЗ; 844).
- 3. Бухарова Г.П., Романцова Т.И. Распространенность избыточного веса и ожирения по данным выборки Московского региона // Ожирение и метаболизм. 2007; 2: 14–6.
- 4. Després J., Lemieux I. Abdominal obesity and metabolic syndrome // Nature. -2006; 444: 881-7.
- 5. Scherer P., Williams S., Fogliano M. et al. A novel serum protein similar to C1q, produced exclusively in adipocytes // J. Biol. Chem. 1995; 270 (45): 26746–9.
- 6. Empana J. Adiponectin isoforms and cardiovascular disease: the epidemiological evidence has just begun # Eur. Heart J. -2008; 29 (10): 1221–3.

- 7. Cnop M., Havel P., Utzschneider K. et al. Relationship of adiponectin to body fatdistribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex // Diabetologia. 2003; 46: 459–69.
- 8. Matsuzawa Y., Funahashi T., Kihara S. et al. Adiponectin and Metabolic Syndrome // Arterioscler. Thromb. Vasc. Biol. 2004; 24: 29–33.
- 9. Seifi S., Nazifi S., Tabandeh M. et al. AdipoR1 and AdipoR2 gene expression are regulated by thyroid hormones in adipose tissue // Mol. Cell. Biochem. 2013; 377 (1–2): 55–63.
- 10. Kubota N., Yano W., Kubota T. et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake // Cell. Metab. 2007; 6 (1): 55–68.
- 11. Ceddia R., Somwar R., Maida A. et al. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells // Diabetologia. 2005; 48 (1): 132–9.
- 12. Майоров А.Ю. Инсулинорезистентность в патогенезе сахарного диабета 2 типа // Сахарный диабет. — 2011; 1: 35—43.
- 13. Lindsay R., Funahashi T., Hanson R. et al. Adiponectin and development of type 2 diabetes in the Pima Indian population // Lancet. -2002; 360: 57–8.
- 14. Li S., Shin H., Ding E. et al. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis // JAMA. 2009; 302 (2): 179–88.
- 15. Tonjes A., Fasshauer M., Kratzsch J. et al. Adipokine pattern in subjects with impaired fasting glucose and impaired glucose tolerance in comparison to normal glucose tolerance and diabetes // PLoS One. 2010; 5 (11): 13911.
- 16. Wasim H., Al-Daghri N., Chetty R. et al. Relationship of serum adiponectin and resistin to glucose intolerance and fat topography in South-Asians // Cardiovasc. Diabetol. 2006; 2 (5): 10.
- 17. Вербовой А.Ф., Скудаева Е.С., Пашенцева А.В. Уровни резистина, адипонектина и инсулинорезистентности у пациентов с разной степенью нарушений углеводного обмена // Ожирение и метаболизм. — 2011; 3: 57—60.
- 18. Косыгина А.В., Сосунов В.В., Петеркова В.А. и др. Экспрессия гена адипонектина (ADIPOQ) в подкожной и висцеральной жировой ткани и уровень адипонектина сыворотки крови у детей // Пробл. эндокринол. 2010; 56 (6): 3—8
- 19. Вербовой А.Ф., Вербовая Н.И., Капралова И.Ю. Адипонектин, лептин и другие метаболические показатели у больных гипотиреозом // Фарматека. 2014: 10: 67—9.
- 20. Вербовая Н.И., Капралова И.Ю., Вербовой А.Ф. Содержание резистина и других адипокинов у больных гипотиреозом // Тер. арх. 2014; 10: 33–5.
- 21. Чубриева С.Ю, Глухов Н.В., Зайчик А.М. Жировая ткань как эндокринный регулятор (обзор литературы) // Вестник Санкт- Петербургского университета. 2008; 1: 32–43.
- 22. Cao Y., Tao L., Yuan Y. et al. Endothelial dysfunction in adiponectin deficiency and its mechanisms involved $/\!/$ J. Mol. Cell. Cardiol. 2009; 46: 413–9
- 23. Shargorodsky M., Boaz M., Goldberg Y. et al. Adiponectin and vascular properties in obese patients: is it a novel biomarker of early atherosclerosis? // Int. J. Obes. (Lond.) 2009; 33: 553-8.
- 24. Greenstein A., Khavandi K., Withers S. et al. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients // Circulation. 2009; 119: 1661–70.
- 25. Shatat I., Freeman K., Vuguin P. et al. Relationship between adiponectin and ambulatory blood pressure in obese adolescents // Pediatr. Res. 2009; 65: 691–5.
- 26. Осина А.С. Оценка взаимосвязи инсулинорезистентности и эндотелиальной дисфункции у больных СД 2 типа. Автореф. дис. ... канд. мед. наук. Самара, 2010; 21 с.
- 27. Antoniades C., Antonopoulos A., Tousoulis D. et al. Adiponectin: from obesity to cardiovascular disease // Obes. Rev. 2009; 10: 269–79.
- 28. Wannamethee S., Whincup P., Lennon L. et al. Circulating adiponectin levels and mortality in elderly men with and without cardiovascular disease and heart failure // Arch. Intern. Med. 2007; 167: 1510–7.
- 29. Ouedraogo R., Wu X., Xu S. et al. Adiponectin suppression of high-glucose- induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway // Diabetes. 2006; 55 (6): 1840–6.
- 30. Goldstein B., Scalia R., Ma X. Protective vascular and myocardial effects of adiponectin // Nat. Clin. Pract. Cardiovasc. Med. 2009; 6 (1): 27–35.
- 31. Tao L., Gao E., Jiao X. et al. Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress // Circulation. -2007; 115 (11): 1408-16.

- 32. Pischon T., Girman C., Hotamisligil G. et al. Plasma adiponectin levels and risk of myocardial infarction in men // JAMA. 2004; 291 (14): 1730–7.
- 33. Морковских Н.В. Маркеры эндокринной системы и воспаления как прогностические факторы риска сосудистых осложнений при сахарном диабете 2 типа. Дис. ... канд. мед. наук. Самара, 2010; 142 с.
- 34. Shibata R., Ouchi N., Ito M. et al. Adiponectin-mediated modulation of hypertrophic signals in the heart $\prime\prime$ Nat. Med. 2004; 10 (12): 1384–9.
- 35. Митрошина Е.В. Клинико-лабораторные особенности ожирения, манифестировавшего в пубертатный период у юношей и мужчин. Автореф. дис. ... канд. мед. наук. Самара, 2011; 24 с.
- 36. Liao Y., Takashima S., Maeda N. et al. Exacerbation of Heart failure in adiponectin deficient mice due to impaired regulation of AMPK and glucose metabolism // Cardiovasc. Res. 2005: 67: 705–13.
- 37. Капралова И.Ю., Вербовой А.Ф., Шаронова Л.А. Содержание адипокинов и показатели эхокардиографии у женщин с гипотиреозом // Клиницист. 2014; 2: 17–21.

ADIPONECTIN: BIOLOGICAL AND PATHOPHYSIOLOGICAL EFFECTS

A. Pashentseva, Candidate of Medical Sciences; Professor A. Verbovoy, MD;

L. Sharonova, Candidate of Medical Sciences;

Samara State Medical University

The paper discusses the current views of the biological effects of adiponectin and considers its role in the development of insulin resistance, atherosclerosis, and cardiovascular diseases.

Key words: endocrinology, adiponectin, insulin resistance, type 2 diabetes mellitus, atherosclerosis, cardiovascular diseases.