Персонифицированный подход к диагностике и терапии коморбидного остеопороза в клинической практике

DOI: https://doi.org/10.29296/25877305-2022-05-03
Номер журнала: 
5
Год издания: 
2022

Н.Г. Саркисян, доктор медицинских наук,
П.И. Астрюхина,
В.И. Шамрай
Уральский государственный медицинский университет, Екатеринбург
E-mail: narine_25@mail.ru

В настоящее время в хирургии применяются разнообразные методики и материалы для восстановления костных структур. Использование оксида циркония (ZrO2) и его сплавов является новым и малоизученным методом восстановления костных структур, при котором пока остается открытым ряд вопросов, таких как качество и сроки интеграции ZrO2, его биосовместимость с тканями живого организма и влияние на них. Целью систематического обзора является поиск и анализ исследований, определяющих перспективу использования циркония и циркониевых сплавов в хирургии с учетом преимуществ и недостатков данных материалов.

Ключевые слова: 
хирургия
диоксид циркония
костная регенерация
остеосинтез
коморбидный остеопороз
полостные образования
минеральная плотность костей
Остеомед Форте
полипрагмазия
денситометрия

Для цитирования
Саркисян Н.Г., Астрюхина П.И., Шамрай В.И., Алексеева Н.Ю. Струкова-Джоунс О.В., Радченко Л.Г., Мусатова Л.А., Щербакова Ю.Г. Персонифицированный подход к диагностике и терапии коморбидного остеопороза в клинической практике . Врач, 2022; (5): 14-17 https://doi.org/10.29296/25877305-2022-05-03


Список литературы: 
  1. Alfawaz Y. Zirconia Crown as Single Unit Tooth Restoration: A Literature Review.
  2. J Contemp Dental Pract. 2016; 17 (5): 418–22. DOI:10.5005/jp-journals-10024-1865
  3. Banci L., Balato G., Salari P. et al. Systematic review and meta-analysis of ceramic coated implants in total knee arthroplasty. Comparable mid-term results to uncoated implants. Knee Surg Sports Traumatol Arthrosc. 2021. DOI: 10.1007/s00167-021-06775-6
  4. Komar D., Bago I., Dubravka Negovetić Vranić et al. Influence of Different Surface Pretreatments of Zirconium Dioxide Reinforced Lithium Disilicate Ceramics on the Shear Bond Strength of Self-Adhesive Resin Cement. Acta Stomatol Croat. 2021; 55 (3): 264–79. DOI: 10.15644/asc55/3/4
  5. Abedi G., Jahanshahi A., Hosein Fathi M. et al. Study of nano-hydroxyapatite/zirconia stabilized with yttria in bone healing: histopathological study in rabbit model. Polish J Pathol. 2014; 65 (1): 40–7. DOI: 10.5114/pjp.2014.42668
  6. Sivaraman K., Chopra A., Narayan A. et al. Is zirconia a viable alternative to titanium for oral implant? A critical review. J Prosthodont Res. 2018; 62 (2): 121–33. DOI: 10.1016/j.jpor.2017.07.003
  7. Bhowmick А., Pramanik N., Jana P. et al. Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application. Int J Biol Macromol. 2017; 95: 348–56. DOI: 10.1016/j.ijbiomac.2016.11.052
  8. Mortada B., Matar T., Sakaya A. et al. Postmetalated Zirconium Metal Organic Frameworks as a Highly Potent Bactericide. ACS Publications. 2017; 56 (8): 4740–5. DOI: 10.1021/acs.inorgchem.7b00429
  9. Shao R., Quan R., Wang T. et al. Effects of a bone graft substitute consisting of porous gradient HA/ZrO 2 and gelatin/chitosan slow-release hydrogel containing BMP-2 and BMSCs on lumbar vertebral defect repair in rhesus monkey. J Tissue Eng Regen Med. 2018; 12 (3): e1813-e1825. DOI: 10.1002/term.2601
  10. Sadovoy S.M., Kirillova I.A. Composite bone-ceramic implant based on ceramic material of zirconium oxide – aluminum oxide system. Innovative Medical Technology Center (Medical Technopark), 2018.
  11. Shi Y., Quan R., Xie S. et al. Evaluation of a Novel HA, ZrO2-Based Porous Bioceramic Artificial Vertebral Body Combined with a rhBMP-2, Chitosan Slow-Release Hydrogel. PLoS One. 2016; 11 (7): 157698. DOI: 10.1371/journal.pone.0157698
  12. Sakthiabirami K., Soundharrajan V., Kang J. Three-Dimensional Zirconia-Based Scaffolds for Load-Bearing Bone-Regeneration Applications: Prospects and Challenges. Materials (Basel). 2021; 14 (12): 3207. DOI: 10.3390/ma14123207
  13. Aboushelib M.N., Shawky R. Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles. Int J Implant Dent. 2017; 3 (1): 21. DOI: 10.1186/s40729-017-0082-6
  14. Malmström J., Adolfsson E., Emanuelsson L. et al. Bone ingrowth in zirconia and hydroxyapatite scaffolds with identical microporosity. J Mater Sci Mater Med. 2008; 19 (9): 2983–92. DOI: 10.1007/s10856-007-3045-2
  15. Kim H.W., Shin S., Kim H. et al. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect. J Biomater Appl. 2008; 22 (6): 485–504. DOI: 10.1177/0885328207078075
  16. Gaihre B., Jayasuriya A.C. Comparative investigation of porous nano-hydroxyapaptite, chitosan, nano-zirconia, chitosan and novel nano-calcium zirconate, chitosan composite scaffolds for their potential applications in bone regeneration. Mater Sci Eng C Mater Biol Appl. 2018; 91: 330–9. DOI: 10.1016/j.msec.2018.05.060
  17. Gordeev S., Barzinskiy O. Implant for surgical treatment of inflammatory and tumor diseases of the spine. Semantic Scholar, 2015.
  18. Darchoevich A.S., Zinovievich V.L. Individual implant of replacement of postoperative lower jaw defects. Elibrary, 2014;
  19. Sollazzo V., Pezzetti F., Scarano A. et al. Zirconium oxide coating improves implant osseointegration in vivo. Dent Mater. 2008; 24 (3): 357–61. DOI: 10.1016/j.dental.2007.06.003
  20. Efe T., Heyse T.J., Haas S.B. The use of oxidized zirconium alloy in knee arthroplasty. Expert Rev Med Devices. 2012; 9 (4): 409–21. DOI: 10.1586/erd.12.30
  21. Hafezeqoran А., Koodaryan R. Effect of Zirconia Dental Implant Surfaces on Bone Integration: A Systematic Review and Meta-Analysis. Biomed Res Int. 2017; 2017: 9246721. DOI: 10.1155/2017/9246721
  22. Barbosa D.D., Delfino M.M., Guerreiro-Tanomaru J.M. et al. Histomorphometric and immunohistochemical study shows that tricalcium silicate cement associated with zirconium oxide or niobium oxide is a promising material in the periodontal tissue repair of rat molars with perforated pulp chamber floors. Int Endod J. 2021; 54 (5): 736–52. DOI: 10.1111/iej.13459.
  23. Schewelov T., Sanzen L., Önsten I. et al. Total hip replacement with a zirconium oxide ceramic femoral head. J Bone Joint Surg Br. 2005; 87 (12): 1631–5. DOI: 10.1302/0301-620X.87B12.16873
  24. Dogan S., Raigrodski A.J. Cementation of Zirconia-Based Toothborne Restorations: A Clinical Review. Compend Contin Educ Dent. 2019; 40 (8): 536–40.
  25. Tang Z., Zhao X., Wang H. et al. Clinical evaluation of monolithic zirconia crowns for posterior teeth restorations. Medicine (Baltimore). 2019; 98 (40): e17385. DOI: 10.1097/MD.0000000000017385
  26. Schüttler K. F., Efe T., Heyse T.J. Oxidized Zirconium Bearing Surfaces in Total Knee Arthroplasty: Lessons Learned. J Knee Surg. 2015; 28 (5): 376–81. DOI: 10.1055/s-0035-1551836
  27. Balagangadharan K., Chandran S., Arumugam B. et al. Chitosan, nano-hydroxyapatite, nano-zirconium dioxide scaffolds with miR-590-5p for bone regeneration. Int J Biol Macromol. 2018; 111: 953–8. DOI: 10.1016/j.ijbiomac.2018.01.122
  28. Schünemann F.H., Galárraga-Vinueza M.E., Magini R. et al. Zirconia surface modifications for implant dentistry. Mater Sci Eng C Mater Biol Appl. 2019; 98: 1294–305. DOI: 10.1016/j.msec.2019.01.062
  29. Linkevicius T., Apse P. Influence of abutment material on stability of peri-implant tissues: a systematic review. Int J Oral Maxillofac Implants. 2008; 23 (3): 449–56.
  30. Roehling S., Schlegel K.A., Woelfler H. Performance and outcome of zirconia dental implants in clinical studies: A meta-analysis. Clin Oral Implants Res. 2018; 29 (16):135–53. DOI: 10.1111/clr.13352
  31. Ghodsi S., Jafarian Z. A Review on Translucent Zirconia. Eur J Prosthodont Restor Dent. 2018; 26 (2): 62–74. DOI: 10.1922/EJPRD_01759Ghodsi13
  32. Oyar P., Durkan R., Deste G.. The effect of the design of a mandibular implant-supported zirconia prosthesis on stress distribution. J Prosthet Dent. 2021; 125 (3): 502.e1-502.e11. DOI: 10.1016/j.prosdent.2020.05.027
  33. Turon-Vinas M., Anglada M. Strength and fracture toughness of zirconia dental ceramics. Dent Mater. 2018; 34 (3): 365–75. DOI: 10.1016/j.dental.2017.12.007
  34. Sailer I., Strasding M., Valente N.A. et al. Systematic review of survival and complication rates of zirconium-ceramic and metal-ceramic multi-block fixed dentures. Clin Oral Implants Res. 2018; 29 (16): 184–98. DOI: 10.1111/clr.13277
  35. Zeynep Ozkurt, Ender Kazazoğlu. Clinical success of zirconia in dental applications. J Prosthodont. 2010; 19 (1): 64–8. DOI: 10.1111/j.1532-849X.2009.00513.x
  36. Roehling S., Schlegel K.A, Woelfler H. Zirconia compared to titanium dental implants in preclinical studies-A systematic review and meta-analysis. Clin Oral Implants Res. 2019; 30 (5): 365–95. DOI: 10.1111/clr.13425
  37. Bormann K.-H., Gellrich N.-C., Kniha H. et al. A prospective clinical study to evaluate the performance of zirconium dioxide dental implants in single-tooth edentulous area: 3-year follow-up. BMC Oral Health. 2018; 18 (1): 181. DOI: 10.1186/s12903-018-0636-x
  38. Cionca N., Hashim D., Mombelli A. Zirconia dental implants: where are we now, and where are we heading? Periodontol 2000. 2017; 73 (1): 241–58. DOI: 10.1111/prd.12180
  39. Hashim D., Cionca N., Courvoisier D.S. et al. A systematic review of the clinical survival of zirconia implants. Clin Oral Investig. 2016; 20 (7): 1403–17. DOI: 10.1007/s00784-016-1853-9
  40. Hanawa T. Zirconia versus titanium in dentistry: A review. Dent Mater J. 2020; 39 (1): 24–36. DOI: 10.4012/dmj.2019-172
  41. Iegami C.M., Uehara P.N., Sesma N. et al. Survival rate of titanium-zirconium narrow diameter dental implants versus commercially pure titanium narrow diameter dental implants: A systematic review. Clin Implant Dent Relat Res. 2017; 19 (6): 1015–22. DOI: 10.1111/cid.12527
  42. Afrashtehfar K.I., Del Fabbro M. Clinical performance of zirconia implants: A meta-review. J Prosthet Dent. 2020; 123 (3): 419–26. DOI: 10.1016/j.prosdent.2019.05.017