Профилактика ожирения и склерополикистоза с применением биологически активной добавки SELENBIO for women

DOI: https://doi.org/10.29296/25877305-2022-03-07
Номер журнала: 
3
Год издания: 
2022

Т.В. Потупчик(1), кандидат медицинских наук, Е.В. Окладникова(1), кандидат медицинских наук,
Т.В. Дресвянская(2) (1)Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого
Минздрава России (2)Красноярская межрайонная клиническая больница №4 E-mail: potupchik_tatyana@mail.ru

В статье представлен обзор сведений о роли микроэлемента селена (Se) в липидном и углеводном обмене. Приведены данные клинических исследований Se, показавшие значение дефицита данного микроэлемента в патогенезе развития ожирения и склерополикистоза яичников. Показано, что в качестве профилактики ожирения и склерополикистоза яичников возможно применение биологически активной добавки SELENBIO for women, полученной методом биофортификации астрагала шерстистоцветкового L-селеноцистином, благодаря чему препарат обладает высокой биодоступностью и низким риском развития токсических эффектов.

Ключевые слова: 
ожирение
углеводный обмен
липидный обмен
склерополикистоз
селен
SELENBIO for women

Для цитирования
Т.В. Потупчик, Е.В. Окладникова, Т.В. Дресвянская Профилактика ожирения и склерополикистоза с применением биологически активной добавки SELENBIO for women . Врач, 2022; (3): 35-42 https://doi.org/10.29296/25877305-2022-03-07


Список литературы: 
  1. Борисов В.В. Микроэлементы селен и цинк в организме женщины и мужчины: проблемы и решения. Consilium Medicum. 2018; 20 (7): 63–8. DOI: 10.26442/2075-1753_2018.7.63-68
  2. Дедов Д.В. Cелен и селенсодержащие препараты: значение для организма и профилактики различных заболеваний. Фармация. 2021; 70 (8): 54–7. DOI: 10.29296/25419218-2021-08-09
  3. Дедов Д.В. Свидетельство о государственной регистрации базы данных №2019621591, Российская Федерация. Данные комплексного клинического, инструментального и лабораторного обследования больных ишемической болезнью сердца, ожирением и дислипидемией: № 2019621478. Заявл. 27.08.2019. Тверской государственный медицинский университет Минздрава России.
  4. Дедов Д.В., Ковальчук А.Н., Эльгардт И.А. и др. Взаимосвязь клинических характеристик и показателей ремоделирования миокарда у больных ишемической болезнью сердца и артериальной гипертензией с сопутствующим ожирением. Евразийский кардиологический журнал. 2019; S1: 159–60.
  5. Дедов Д.В., Колбасников С.В., Ковальчук А.Н. Свидетельство о государственной регистрации базы данных №2021620072, Российская Федерация. Данные комплексного клинико-инструментального обследования больных ишемической болезнью сердца и сахарным диабетом. № 2020622814. Заявл. 25.12.2020. Тверской государственный медицинский университет» Министерства здравоохранения Российской Федерации.
  6. Дедов Д.В., Мазаев В.П., Эльгардт И.А. и др. Взаимосвязь ожирения и артериальной гипертензии как основных факторов риска у больных ишемической болезнью сердца – жителей Тверской области. Кардиоваскулярная терапия и профилактика. 2017; 16 (S3): 102–3.
  7. Полубояринов П.А. Исследование биофортификации растений астрагала Астрагала шерстистоцветкового (Astragalus dasyanthus Pall.) аминокислотой L-селеноцистеином. Вопросы биологической, медицинской и фармацевтической химии. 2019; 22 (12): 64.
  8. Полубояринов П.А., Елистратов Д.Г., Швец В.И. Метаболизм и механизм токсичности селенсодержащих препаратов, используемых для коррекции дефицита микроэлемента селена. Тонкие химические технологии. 2019; 14 (1): 5–24. DOI: 10.32362/2410-6593-2019-14-1-5-24
  9. Banach W., Nitschke K., Krajewska N. et al. The Association between Excess Body Mass and Disturbances in Somatic Mineral Levels. Int J Mol Sci. 2020; 21 (19): 7306. DOI: 10.3390/ijms21197306
  10. Cavedon E., Manso J., Negro I. et al. Selenium Supplementation, Body Mass Composition, and Leptin Levels in Patients with Obesity on a Balanced Mildly Hypocaloric Diet: A Pilot Study. Int J Endocrinol. 2020; 2020: 4802739. DOI: 10.1155/2020/4802739
  11. Coskun A., Arikan T., Kilinc M. et al. Plasma selenium levels in Turkish women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2013; 168 (2): 183–6. DOI: 10.1016/j.ejogrb.2013.01.021
  12. Engin A.B. Adipocyte-Macrophage Cross-Talk in Obesity. Adv Exp Med Biol. 2017; 960: 327–43. DOI: 10.1007/978-3-319-48382-5_14
  13. Fontenelle L.C., Feitosa M.M., Freitas T.E.C. et al. Selenium status and its relationship with thyroid hormones in obese women. Clin Nutr ESPEN. 2021; 41: 398–404. DOI: 10.1016/j.clnesp.2020.10.012
  14. Gać P., Czerwińska K., Macek P. et al. The importance of selenium and zinc deficiency in cardiovascular disorders. Environ Toxicol Pharmacol. 2021; 82: 103553. DOI: 10.1016/j.etap.2020.103553
  15. Heidar Z., Hamzepour N., Modarres S.Z. et al. The Effects of Selenium Supplementation on Clinical Symptoms and Gene Expression Related to Inflammation and Vascular Endothelial Growth Factor in Infertile Women Candidate for In Vitro Fertilization. Biol Trace Elem Res. 2020; 193 (2): 319–25. DOI: 10.1007/s12011-019-01715-5
  16. Hosseini B., Saedisomeolia A., Allman-Farinelli M. Association Between Antioxidant Intake/Status and Obesity: a Systematic Review of Observational Studies. Biol Trace Elem Res. 2017; 175 (2): 287–97. DOI: 10.1007/s12011-016-0785-1
  17. Huang X., Dong Y.L., Li T. et al. Dietary Selenium Regulates microRNAs in Metabolic Disease: Recent Progress. Nutrients. 2021; 13 (5): 1527. DOI: 10.3390/nu13051527
  18. Jacobs E.T., Lance P., Mandarino L.J. et al. Selenium supplementation and insulin resistance in a randomized, clinical trial. BMJ Open Diabetes Res Care. 2019; 7 (1): e000613. DOI: 10.1136/bmjdrc-2018-000613
  19. Jamilian M., Razavi M., Fakhrie Kashan Z. et al. Metabolic response to selenium supplementation in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Clin Endocrinol (Oxf). 2015; 82 (6): 885–91. DOI: 10.1111/cen.12699
  20. Jankovic A., Korac A., Buzadzic B. et al. Redox implications in adipose tissue (dys)function-A new look at old acquaintances. Redox Biol. 2015; 6: 19–32. DOI: 10.1016/j.redox.2015.06.018
  21. Köse S.A., Naziroğlu M. Selenium reduces oxidative stress and calcium entry through TRPV1 channels in the neutrophils of patients with polycystic ovary syndrome. Biol Trace Elem Res. 2014; 158 (2): 136–42. DOI: 10.1007/s12011-014-9929-3
  22. Manna P., Jain S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab Syndr Relat Disord. 2015; 13: 423–44. DOI: 10.1089/met.2015.0095
  23. Nido S.A., Shituleni S.A., Mengistu B.M. et al. Effects of Selenium-Enriched Probiotics on Lipid Metabolism, Antioxidative Status, Histopathological Lesions, and Related Gene Expression in Mice Fed a High-Fat Diet. Biol Trace Elem Res. 2016; 171 (2): 399–409. DOI: 10.1007/s12011-015-0552-8
  24. Ojeda M.L., Herrera I., Nogales F. et al. Fetal рrogramming is deeply related to vaternal selenium status and oxidative balance; experimental offspring health repercussions. Nutrients. 2021; 13 (6): 2085. DOI: 10.3390/nu13062085
  25. Pieczynska J., Grajeta H. The role of selenium in human conception and pregnancy. J Trace Elem Med Biol. 2015; 29 (1): 31–8. DOI: 10.1016/j.jtemb.2014.07.003
  26. Qazi I.H., Angel C., Yang H. et al. Selenium, Selenoproteins, and Female Reproduction: A Review. Molecules. 2018; 23 (12): 3053. DOI: 10.3390/molecules23123053
  27. Rashidi B.H., Mohammad. Hosseinzadeh F. et al. Effects of Selenium Supplementation on Asymmetric Dimethylarginine and Cardiometabolic Risk Factors in Patients with Polycystic Ovary Syndrome. Biol Trace Elem Res. 2020; 196 (2): 430–7. DOI: 10.1007/s12011-019-01954-6
  28. Razavi M., Jamilian M., Kashan Z.F. et al. Selenium Supplementation and the Effects on Reproductive Outcomes, Biomarkers of Inflammation, and Oxidative Stress in Women with Polycystic Ovary Syndrome. Horm Metab Res. 2016; 48 (3): 185–90. DOI: 10.1055/s-0035-1559604
  29. Santos A.C., Passos A.F.F., Holzbach L.C. et al. Selenium Intake and Glycemic Control in Young Adults With Normal-Weight Obesity Syndrome. Front Nutr. 2021; 8: 696325. DOI: 10.3389/fnut.2021.696325
  30. Seale L.A. Selenocysteine β-Lyase: Biochemistry, Regulation and Physiological Role of the Selenocysteine Decomposition Enzyme. Antioxidants (Basel). 2019; 8 (9): 357. DOI: 10.3390/antiox8090357
  31. Shahidi F., De Camargo A.C. Tocopherols and tocotrienols in common and emerging dietary sources: Occurrence, applications, and health benefits. Int J Mol Sci. 2016; 17 (10): 1745. DOI: 10.3390/ijms17101745
  32. Shimada B.K., Alfulaij N., Seale L.A. The Impact of Selenium Deficiency on Cardiovascular Function. Int J Mol Sci. 2021; 22 (19): 10713. DOI: 10.3390/ijms221910713
  33. Soares de Oliveira A.R., Jayanne Climaco Cruz K., Beatriz Silva Morais J. et al. Selenium status and oxidative stress in obese: Influence of adiposity. Eur J Clin Invest. 2021; 51 (9): e13538. DOI: 10.1111/eci.13538
  34. Steinbrenner H. Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic Biol Med. 2013; 65: 1538–47. DOI: 10.1016/j.freeradbiomed.2013.07.016
  35. Steyn M., Zitouni K., Kelly F.J. et al. Sex Differences in Glutathione Peroxidase Activity and Central Obesity in Patients with Type 2 Diabetes at High Risk of Cardio-Renal Disease. Antioxidants (Basel). 2019; 8 (12): 629. DOI: 10.3390/antiox8120629
  36. Suganami T., Ogawa Y. Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol. 2010; 88 (1): 33–9. DOI: 10.1189/jlb.0210072
  37. Szczuko M., Zapalowska-Chwyć M., Drozd R. A Low Glycemic Index Decreases Inflammation by Increasing the Concentration of Uric Acid and the Activity of Glutathione Peroxidase (GPx3) in Patients with Polycystic Ovary Syndrome (PCOS). Molecules. 2019; 24 (8): 1508. DOI: 10.3390/molecules24081508
  38. Torres D.J., Pitts M.W., Hashimoto A.C. et al. Agrp-Specific Ablation of Scly Protects against Diet-Induced Obesity and Leptin Resistance. Nutrients. 2019; 11: 1693. DOI: 10.3390/nu11071693
  39. Touat-Hamici Z., Legrain Y., Bulteau A.L. et al. Selective up-regulation of human selenoproteins in response to oxidative stress. J Biol Chem. 2014; 289 (21): 14750–61. DOI: 10.1074/jbc.M114.551994
  40. Tun S., Spainhower C.J., Cottrill C.L. et al. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol. 2020; 13 (11): 1234. DOI: 10.3389/fphar.2020.01234
  41. Vinceti M., Filippini T., Rothman K.J. Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis. Eur J Epidemiol. 2018; 33 (9): 789–810. DOI: 10.1007/s10654-018-0422-8
  42. Wang Y., Gao X., Pedram P. et al. Significant Beneficial Association of High Dietary Selenium Intake with Reduced Body Fat in the CODING Study. Nutrients. 2016; 8 (1): 24. DOI: 10.3390/nu8010024
  43. Zagrodzki P., Krzyczkowska-Sendrakowska M., Nicol F. et al. Selenium status parameters in patients with polycystic ovary syndrome. J Trace Elem Med Biol. 2017; 44: 241–6. DOI: 10.1016/j.jtemb.2017.08.012
  44. Zhang Q., Qian Z.Y., Zhou P.H. et al. Effects of oral selenium and magnesium co-supplementation on lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in rats fed a high-fat diet. Lipids Health Dis. 2018; 17 (1): 165. DOI: 10.1186/s12944-018-0815-4
  45. Zhao H., Li K., Tang J.Y. et al. Expression of Selenoprotein Genes Is Affected by Obesity of Pigs Fed a High-Fat Diet. J Nutr. 2015; 145 (7): 1394–401. DOI: 10.3945/jn.115.211318
  46. Zhong Q., Lin R., Nong Q. Adiposity and Serum Selenium in U.S. Adults. Nutrients. 2018; 10 (6): 727. DOI: 10.3390/nu10060727
  47. Borisov V.V. Microelements selenium and zinc in female and male body: problems and solutions. Consilium Medicum. 2018; 20 (7): 63–8 (in Russ.). DOI: 10.26442/2075-1753_2018.7.63-68
  48. Dedov D.V. Selenium and selenium-containing drugs: importance for the body and prevention of various diseases. Pharmacy. 2021; 70 (8): 54–7 (in Russ.). DOI: 10.29296/25419218-2021-08-09
  49. Dedov D.V. Certificate of State Registration of Database No. 2019621591 Russian Federation. Data from comprehensive clinical, instrumental, and laboratory examination of patients with coronary heart disease, obesity, and dyslipidemia. no. 2019621478. Tver State Medical University (in Russ.).
  50. Dedov D.V., Kovalchuk A.N., Elgardt I.A. et al. Relationship of clinical characteristics and indicators of myocardial remodeling in patients with coronary heart disease and hypertension with concomitant obesity. Eurasian heart journal. 2019; S1: 159–60 (in Russ.).
  51. Dedov D.V., Kolbasnikov S.V., Kovalchuk A.N. Certificate of state registration of the database No2021620072 Russian Federation. Data of complex clinical and instrumental examination of patients with coronary heart disease and diabetes mellitus: No. 2020622814: application. December 25, 2020. Tver State Medical (in Russ.).
  52. Dedov D.V., Mazaev V.P., Elgardt I.A. et al. Interrelation of obesity and arterial hypertension as the main risk factors in patients with coronary heart disease – residents of Tver region. Cardiovascular Therapy and Prevention. 2017; 16 (S3): 102–3 (in Russ.).
  53. Poluboyarinov P.A. Biofortification of Astragalus astragalus woolly-flowered (Astragalus dasyanthus Pall.) plants with the amino acid L-selenocysteine. Problems of biological, medical and pharmaceutical chemistry. 2019; 22 (12): 64 (in Russ.).
  54. Poluboyarinov P.A., Elistratov D.G., Shvets V.I. Metabolism and mechanism of toxicity of selenium-containing supplements used for optimizing human selenium status. Fine Chemical Technologies. 2019; 14 (1): 5–24 (in Russ.). DOI: 10.32362/2410-6593-2019-14-1-5-24
  55. Banach W., Nitschke K., Krajewska N. et al. The Association between Excess Body Mass and Disturbances in Somatic Mineral Levels. Int J Mol Sci. 2020; 21 (19): 7306. DOI: 10.3390/ijms21197306
  56. Cavedon E., Manso J., Negro I. et al. Selenium Supplementation, Body Mass Composition, and Leptin Levels in Patients with Obesity on a Balanced Mildly Hypocaloric Diet: A Pilot Study. Int J Endocrinol. 2020; 2020: 4802739. DOI: 10.1155/2020/4802739
  57. Coskun A., Arikan T., Kilinc M. et al. Plasma selenium levels in Turkish women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2013; 168 (2): 183–6. DOI: 10.1016/j.ejogrb.2013.01.021
  58. Engin A.B. Adipocyte-Macrophage Cross-Talk in Obesity. Adv Exp Med Biol. 2017; 960: 327–43. DOI: 10.1007/978-3-319-48382-5_14
  59. Fontenelle L.C., Feitosa M.M., Freitas T.E.C. et al. Selenium status and its relationship with thyroid hormones in obese women. Clin Nutr ESPEN. 2021; 41: 398–404. DOI: 10.1016/j.clnesp.2020.10.012
  60. Gać P., Czerwińska K., Macek P. et al. The importance of selenium and zinc deficiency in cardiovascular disorders. Environ Toxicol Pharmacol. 2021; 82: 103553. DOI: 10.1016/j.etap.2020.103553
  61. Heidar Z., Hamzepour N., Modarres S.Z. et al. The Effects of Selenium Supplementation on Clinical Symptoms and Gene Expression Related to Inflammation and Vascular Endothelial Growth Factor in Infertile Women Candidate for In Vitro Fertilization. Biol Trace Elem Res. 2020; 193 (2): 319–25. DOI: 10.1007/s12011-019-01715-5
  62. Hosseini B., Saedisomeolia A., Allman-Farinelli M. Association Between Antioxidant Intake/Status and Obesity: a Systematic Review of Observational Studies. Biol Trace Elem Res. 2017; 175 (2): 287–97. DOI: 10.1007/s12011-016-0785-1
  63. Huang X., Dong Y.L., Li T. et al. Dietary Selenium Regulates microRNAs in Metabolic Disease: Recent Progress. Nutrients. 2021; 13 (5): 1527. DOI: 10.3390/nu13051527
  64. Jacobs E.T., Lance P., Mandarino L.J. et al. Selenium supplementation and insulin resistance in a randomized, clinical trial. BMJ Open Diabetes Res Care. 2019; 7 (1): e000613. DOI: 10.1136/bmjdrc-2018-000613
  65. Jamilian M., Razavi M., Fakhrie Kashan Z. et al. Metabolic response to selenium supplementation in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Clin Endocrinol (Oxf). 2015; 82 (6): 885–91. DOI: 10.1111/cen.12699
  66. Jankovic A., Korac A., Buzadzic B. et al. Redox implications in adipose tissue (dys)function-A new look at old acquaintances. Redox Biol. 2015; 6: 19–32. DOI: 10.1016/j.redox.2015.06.018
  67. Köse S.A., Naziroğlu M. Selenium reduces oxidative stress and calcium entry through TRPV1 channels in the neutrophils of patients with polycystic ovary syndrome. Biol Trace Elem Res. 2014; 158 (2): 136–42. DOI: 10.1007/s12011-014-9929-3
  68. Manna P., Jain S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab Syndr Relat Disord. 2015; 13: 423–44. DOI: 10.1089/met.2015.0095
  69. Nido S.A., Shituleni S.A., Mengistu B.M. et al. Effects of Selenium-Enriched Probiotics on Lipid Metabolism, Antioxidative Status, Histopathological Lesions, and Related Gene Expression in Mice Fed a High-Fat Diet. Biol Trace Elem Res. 2016; 171 (2): 399–409. DOI: 10.1007/s12011-015-0552-8
  70. Ojeda M.L., Herrera I., Nogales F. et al. Fetal рrogramming is deeply related to vaternal selenium status and oxidative balance; experimental offspring health repercussions. Nutrients. 2021; 13 (6): 2085. DOI: 10.3390/nu13062085
  71. Pieczynska J., Grajeta H. The role of selenium in human conception and pregnancy. J Trace Elem Med Biol. 2015; 29 (1): 31–8. DOI: 10.1016/j.jtemb.2014.07.003
  72. Qazi I.H., Angel C., Yang H. et al. Selenium, Selenoproteins, and Female Reproduction: A Review. Molecules. 2018; 23 (12): 3053. DOI: 10.3390/molecules23123053
  73. Rashidi B.H., Mohammad. Hosseinzadeh F. et al. Effects of Selenium Supplementation on Asymmetric Dimethylarginine and Cardiometabolic Risk Factors in Patients with Polycystic Ovary Syndrome. Biol Trace Elem Res. 2020; 196 (2): 430–7. DOI: 10.1007/s12011-019-01954-6
  74. Razavi M., Jamilian M., Kashan Z.F. et al. Selenium Supplementation and the Effects on Reproductive Outcomes, Biomarkers of Inflammation, and Oxidative Stress in Women with Polycystic Ovary Syndrome. Horm Metab Res. 2016; 48 (3): 185–90. DOI: 10.1055/s-0035-1559604
  75. Santos A.C., Passos A.F.F., Holzbach L.C. et al. Selenium Intake and Glycemic Control in Young Adults With Normal-Weight Obesity Syndrome. Front Nutr. 2021; 8: 696325. DOI: 10.3389/fnut.2021.696325
  76. Seale L.A. Selenocysteine β-Lyase: Biochemistry, Regulation and Physiological Role of the Selenocysteine Decomposition Enzyme. Antioxidants (Basel). 2019; 8 (9): 357. DOI: 10.3390/antiox8090357
  77. Shahidi F., De Camargo A.C. Tocopherols and tocotrienols in common and emerging dietary sources: Occurrence, applications, and health benefits. Int J Mol Sci. 2016; 17 (10): 1745. DOI: 10.3390/ijms17101745
  78. Shimada B.K., Alfulaij N., Seale L.A. The Impact of Selenium Deficiency on Cardiovascular Function. Int J Mol Sci. 2021; 22 (19): 10713. DOI: 10.3390/ijms221910713
  79. Soares de Oliveira A.R., Jayanne Climaco Cruz K., Beatriz Silva Morais J. et al. Selenium status and oxidative stress in obese: Influence of adiposity. Eur J Clin Invest. 2021; 51 (9): e13538. DOI: 10.1111/eci.13538 Steinbrenner H. Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic Biol Med. 2013; 65: 1538–47. DOI: 10.1016/j.freeradbiomed.2013.07.016
  80. Steyn M., Zitouni K., Kelly F.J. et al. Sex Differences in Glutathione Peroxidase Activity and Central Obesity in Patients with Type 2 Diabetes at High Risk of Cardio-Renal Disease. Antioxidants (Basel). 2019; 8 (12): 629. DOI: 10.3390/antiox8120629
  81. Suganami T., Ogawa Y. Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol. 2010; 88 (1): 33–9. DOI: 10.1189/jlb.0210072
  82. Szczuko M., Zapalowska-Chwyć M., Drozd R. A Low Glycemic Index Decreases Inflammation by Increasing the Concentration of Uric Acid and the Activity of Glutathione Peroxidase (GPx3) in Patients with Polycystic Ovary Syndrome (PCOS). Molecules. 2019; 24 (8): 1508. DOI: 10.3390/molecules24081508
  83. Torres D.J., Pitts M.W., Hashimoto A.C. et al. Agrp-Specific Ablation of Scly Protects against Diet-Induced Obesity and Leptin Resistance. Nutrients. 2019; 11: 1693. DOI: 10.3390/nu11071693
  84. Touat-Hamici Z., Legrain Y., Bulteau A.L. et al. Selective up-regulation of human selenoproteins in response to oxidative stress. J Biol Chem. 2014; 289 (21): 14750–61. DOI: 10.1074/jbc.M114.551994
  85. Tun S., Spainhower C.J., Cottrill C.L. et al. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol. 2020; 13 (11): 1234. DOI: 10.3389/fphar.2020.01234
  86. Vinceti M., Filippini T., Rothman K.J. Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis. Eur J Epidemiol. 2018; 33 (9): 789–810. DOI: 10.1007/s10654-018-0422-8
  87. Wang Y., Gao X., Pedram P. et al. Significant Beneficial Association of High Dietary Selenium Intake with Reduced Body Fat in the CODING Study. Nutrients. 2016; 8 (1): 24. DOI: 10.3390/nu8010024
  88. Zagrodzki P., Krzyczkowska-Sendrakowska M., Nicol F. et al. Selenium status parameters in patients with polycystic ovary syndrome. J Trace Elem Med Biol. 2017; 44: 241–6. DOI: 10.1016/j.jtemb.2017.08.012
  89. Zhang Q., Qian Z.Y., Zhou P.H. et al. Effects of oral selenium and magnesium co-supplementation on lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in rats fed a high-fat diet. Lipids Health Dis. 2018; 17 (1): 165. DOI: 10.1186/s12944-018-0815-4
  90. Zhao H., Li K., Tang J.Y. et al. Expression of Selenoprotein Genes Is Affected by Obesity of Pigs Fed a High-Fat Diet. J Nutr. 2015; 145 (7): 1394–401. DOI: 10.3945/jn.115.211318
  91. Zhong Q., Lin R., Nong Q. Adiposity and Serum Selenium in U.S. Adults. Nutrients. 2018; 10 (6): 727. DOI: 10.3390/nu10060727