ВАК (Россия)
РИНЦ (Россия)
EBSCO
Регистрационное агентство DOI (США)
Ulrichsweb (Ulrich’s Periodicals Directory)
Scientific Indexing Services

Основные группы ингибиторов пропротеиновой конвертазы субтилизин-кексинового типа 9: механизмы действия и клиническая эффективность. Ч. 2

DOI: https://doi.org/10.29296/25877305-2021-04-05
Номер журнала: 
4
Год издания: 
2021

А.М. Чаулин(1, 2), Н.А. Свечков(1, 2), С.Л. Волкова(1) (1)Самарский областной клинический
кардиологический диспансер, Самара (2)Самарский государственный медицинский университет Минздрава России
E-mail: alekseymichailovich22976@gmail.com

Пропротеиновая конвертаза субтилизин-кексинового типа 9 (PCSK9) рассматривается в качестве многообещающей терапевтической мишени для разработки новых групп лекарственных препаратов, направленных на лечение и профилактику дислипидемий и сердечно-сосудистых заболеваний. Настоящая статья является продолжением ранее начатого обсуждения основных групп ингибиторов PCSK91. В статье подробно рассматриваются механизмы действия и клиническая эффективность следующих групп препаратов: низкомолекулярных ингибиторов PCSK9, миметических пептидов и вакцин против PCSK9.

Ключевые слова: 
кардиология
пропротеиновая конвертаза субтилизин-кексинового типа 9
атеросклероз
холестерин
липопротеиды низкой плотности
рецепторы липопротеидов низкой плотности
сердечно-сосудистые заболевания
ингибиторы PCSK9
миметические пептиды
вакцина

Для цитирования
А.М. Чаулин, Н.А. Свечков, С.Л. Волкова Основные группы ингибиторов пропротеиновой конвертазы субтилизин-кексинового типа 9: механизмы действия и клиническая эффективность. Ч. 2 . Врач, 2021; (4): 31-37 https://doi.org/10.29296/25877305-2021-04-05


Список литературы: 
  1. Чаулин А.М., Дупляков Д.В. PCSK-9: современные представления о биологической роли и возможности использования в качестве диагностического маркера сердечно-сосудистых заболеваний. Часть 1. Кардиология: новости, мнения, обучение. 2019; 7 (2): 45–57 [Chaulin A.M., Duplyakov D.V. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. Part 1. Kardiologiya: novosti, mneniya, obuchenie = Cardiology: News, Opinions, Training. 2019; 7 (2): 45–57 (in Russ.)]. DOI: 10.24411/2309-1908-2019-12005
  2. Чаулин А.М., Дупляков Д.В. PCSK-9: современные представления о биологической роли и возможности использования в качестве диагностического маркера сердечно-сосудистых заболеваний. Часть 2. Кардиология: новости, мнения, обучение. 2019; 7 (4): 24–35 [Chaulin A.M., Duplyakov D.V. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. Part 2. Kardiologiya: novosti, mneniya, obuchenie = Cardiology: News, Opinions, Training. 2019; 7 (4): 24–35 (in Russ.)]. DOI: 10.24411/2309-1908-2019-14004
  3. Tóth Š., Fedačko J., Pekárová T. et al. Elevated Circulating PCSK9 Concentrations Predict Subclinical Atherosclerotic Changes in Low Risk Obese and Non-Obese Patients. Cardiol Ther. 2017; 6 (2): 281–9. DOI: 10.1007/s40119-017-0092-8
  4. Чаулин А.М., Дупляков Д.В. Биомаркеры острого инфаркта миокарда: диагностическая и прогностическая ценность. Часть 2 (обзор литературы). Клиническая практика. 2020; 11 (4): 70–82 [Chaulin A.M., Duplyakov D.V. Biomarkers of Acute Myocardial Infarction: Diagnostic and Prognostic Value. Part 2 (Literature Review). Journal of Clinical Practice. 2020; 11 (4): 70–82 (in Russ.)]. DOI: 10.17816/clinpract48893
  5. Bae K.H., Kim S.W., Choi Y.K. et al. Serum Levels of PCSK9 Are Associated with Coronary Angiographic Severity in Patients with Acute Coronary Syndrome. Diabetes Metab J. 2018; 42 (3): 207–14. DOI: 10.4093/dmj.2017.0081
  6. Чаулин А.М., Дупляков Д.В. Роль PCSK9 в регуляции транспорта липопротеинов (обзор литературы). Вопросы биологической, медицинской и фармацевтической химии. 2021; 24 (1): 42–5 [Chaulin A.M., Duplyakov D.V. The role of PCSK9 in the regulation of lipoprotein transport (literature review). Problems of biological, medical and pharmaceutical chemistry. 2021; 24 (1): 42–5 (in Russ.)]. DOI: 10.29296/25877313-2021-01-04
  7. Чаулин А.М., Волкова С.Л., Свечков Н.А. Основные группы ингибиторов пропротеиновой конвертазы субтилизин-кексинового типа 9 (PCSK9): механизмы действия и клиническая эффективность. Ч. 1. Врач. 2021; 32 (3): 21–6 [Chaulin A.M., Volkova S. L., Svechkov N. A. Main groups of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors: mechanisms of action and clinical efficacy. Part 1. Vrach. 2021; 2021; 32 (3): 21–6 (in Russ.)]. DOI: 10.29296/25877305-2021-03-04
  8. Lo Surdo P., Bottomley M.J., Calzetta A. et al. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. EMBO Rep. 2011; 12: 1300–5. DOI: 10.1038/embor.2011.205
  9. Banerjee Y., Santos R.D., Al-Rasadi K. et al. Targeting PCSK9 for therapeutic gains: Have we addressed all the concerns? Atherosclerosis. 2016; 248: 62–75. DOI: 10.1016/j.atherosclerosis.2016.02.018
  10. Rothe C., Skerra A. Anticalin((R)) proteins as therapeutic agents in human diseases. BioDrugs. 2018; 32: 233–43. DOI: 10.1007/s40259-018-0278-1
  11. Masuda Y., Yamaguchi S., Suzuki C. et al. Generation and characterization of a novel small biologic alternative to proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies, DS-9001a, albumin binding domain-fused anticalin protein. J Pharmacol Exp Ther. 2018; 365: 368–78. DOI: 10.1124/jpet.117.246652
  12. Gebauer M., Skerra A. Anticalins small engineered binding proteins based on the lipocalin scaffold. Methods Enzymol. 2012; 503: 157–88. DOI: 10.1016/B978-0-12-396962-0.00007-0
  13. Seidah N.G., Prat A., Pirillo A. et al. Novel strategies to target proprotein convertase subtilisin kexin 9: beyond monoclonal antibodies. Cardiovasc Res. 2019; 115 (3): 510–8. DOI: 10.1093/cvr/cvz003
  14. Inazu A., Brown M.L., Hesler C.B. et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med. 1990; 323: 1234–8. DOI: 10.1056/NEJM199011013231803
  15. Miyosawa K., Watanabe Y., Murakami K. et al. New CETP inhibitor K-312 reduces PCSK9 expression: a potential effect on LDL cholesterol metabolism. Am J Physiol Endocrinol Metab. 2015; 309: E177–190. DOI: 10.1152/ajpendo.00528.2014
  16. Lintner N.G., McClure K.F., Petersen D. et al. Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biol. 2017; 15: e2001882. DOI: 10.1371/journal.pbio.2001882
  17. Mullard A. Nine paths to PCSK9 inhibition. Nat Rev Drug Discov. 2017; 16: 299–301. DOI: 10.1038/nrd.2017.83
  18. Imanshahidi M., Hosseinzadeh H. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytother Res. 2008; 22: 999–1012. DOI: 10.1002/ptr.2399
  19. Kong W., Wei J., Abidi P. et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med. 2004; 10: 1344–51. DOI: 10.1038/nm1135
  20. Li H., Dong B., Park S.W. et al. Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J Biol Chem. 2009; 284: 28885–95. DOI: 10.1074/jbc.M109.052407
  21. Cameron J., Ranheim T., Kulseth M.A. et al. Berberine decreases PCSK9 expression in HepG2 cells. Atherosclerosis. 2008; 201: 266–73. DOI: 10.1016/j.atherosclerosis.2008.02.004
  22. Sultana N., Ata A. Oleanolic acid and related derivatives as medicinally important compounds. J Enzyme Inhib Med Chem. 2008; 23: 739–56. DOI: 10.1080/14756360701633187
  23. Chen S., Wen X., Zhang W. et al. Hypolipidemic effect of oleanolic acid is mediated by the miR-98-5p/PGC-1beta axis in high-fat diet-induced hyperlipidemic mice. FASEB J. 2017; 31: 1085–96. DOI: 10.1096/fj.201601022R
  24. Tsai S.J., Yin M.C. Antioxidative and anti-inflammatory protection of oleanolic acid and ursolic acid in PC12 cells. J Food Sci. 2008; 73: H174–178. DOI: 10.1111/j.1750-3841.2008.00864.x
  25. Wang X., Liu R., Zhang W. et al. Oleanolic acid improves hepatic insulin resistance via antioxidant, hypolipidemic and anti-inflammatory effects. Mol Cell Endocrinol. 2013; 376: 70–80. DOI: 10.1016/j.mce.2013.06.014
  26. Rodriguez-Rodriguez R., Stankevicius E., Herrera M.D. et al. Oleanolic acid induces relaxation and calcium-independent release of endothelium-derived nitric oxide. Br J Pharmacol. 2008; 155: 535–46. DOI: 10.1038/bjp.2008.289
  27. He N.Y., Li Q., Wu C.Y. et al. Lowering serum lipids via PCSK9-targeting drugs: current advances and future perspectives. Acta Pharmacol Sin. 2017; 38: 301–11. DOI: 10.1038/aps.2016.134
  28. Zhao Z., Tuakli-Wosornu Y., Lagace T.A. et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet. 2006; 79: 514–23. DOI: 10.1086/507488
  29. Gustafsen C., Kjolby M., Nyegaard M. et al. The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab. 2014; 19: 310–8. DOI: 10.1016/j.cmet.2013.12.006
  30. Hu D., Yang Y., Peng D.Q. Increased sortilin and its independent effect on circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) in statin-naive patients with coronary artery disease. Int J Cardiol. 2017; 227: 61–5. DOI: 10.1016/j.ijcard.2016.11.064
  31. Goettsch C., Kjolby M., Aikawa E. Sortilin and its multiple roles in cardiovascular and metabolic diseases. Arterioscler Thromb Vasc Biol. 2018; 38: 19–25. DOI: 10.1161/ATVBAHA.117.310292
  32. Nykjaer A., Lee R., Teng K.K. et al. Sortilin is essential for proNGF-induced neuronal cell death. Nature. 2004; 427: 843–8. DOI: 10.1038/nature02319
  33. Debose-Boyd R.A., Horton J.D. Opening up new fronts in the fight against cholesterol. Elife. 2013; 2: e00663. DOI: 10.7554/eLife.00663
  34. Chen X.W., Wang H., Bajaj K. et al. SEC24A deficiency lowers plasma cholesterol through reduced PCSK9 secretion. Elife. 2013; 2: e00444. DOI: 10.7554/eLife.00444
  35. Jung C.H., Cho I., Ahn J. et al. Quercetin reduces high-fat diet-induced fat accumulation in the liver by regulating lipid metabolism genes. Phytother Res. 2013; 27: 139–43. DOI: 10.1002/ptr.4687
  36. Mbikay M., Mayne J., Sirois F. et al. Mice fed a high-cholesterol diet supplemented with quercetin-3-glucoside show attenuated hyperlipidemia and hyperinsulinemia associated with differential regulation of PCSK9 and LDLR in their liver and pancreas. Mol Nutr Food Res. 2018; 62: e1700729. DOI: 10.1002/mnfr.201700729
  37. Mbikay M., Sirois F., Simoes S. et al. Quercetin-3-glucoside increases low-density lipoprotein receptor (LDLR) expression, attenuates proprotein convertase subtilisin/kexin 9 (PCSK9) secretion, and stimulates LDL uptake by Huh7 human hepatocytes in culture. FEBS Open Biol. 2014; 4: 755–62. DOI: 10.1016/j.fob.2014.08.003
  38. Craik D.J., Fairlie D.P., Liras S. et al. The future of peptide-based drugs. Chem Biol Drug Des. 2013; 81: 136–47. DOI: 10.1111/cbdd.12055
  39. Zhang D.W., Lagace T.A., Garuti R. et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem. 2007; 282: 18602–12. DOI: 10.1074/jbc.M702027200
  40. Tveten K., Holla O.L., Cameron J. et al. Interaction between the ligand-binding domain of the LDL receptor and the C-terminal domain of PCSK9 is required for PCSK9 to remain bound to the LDL receptor during endosomal acidification. Hum Mol Genet. 2012; 21: 1402–9. DOI: 10.1093/hmg/ddr578
  41. Schroeder C.I., Swedberg J.E., Withka J.M. et al. Design and synthesis of truncated EGF-A peptides that restore LDL-R recycling in the presence of PCSK9 in vitro. Chem Biol. 2014; 21: 284–94. DOI: 10.1016/j.chembiol.2013.11.014
  42. McNutt M.C., Kwon H.J., Chen C. et al Antagonism of secreted PCSK9 increases low density lipoprotein receptor expression in HepG2 cells. J Biol Chem. 2009; 284: 10561–70. DOI: 10.1074/jbc.M808802200
  43. Zhang Y., Eigenbrot C., Zhou L. et al. Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor. J Biol Chem. 2014; 289: 942–55. DOI: 10.1074/jbc.M113.514067
  44. Du F., Hui Y., Zhang M. et al. Novel domain interaction regulates secretion of proprotein convertase subtilisin/kexin type 9 (PCSK9) protein. J Biol Chem. 2011; 286: 43054–61. DOI: 10.1074/jbc.M111.273474
  45. Alghamdi R.H., O’Reilly P., Lu C. et al. LDL-R promoting activity of peptides derived from human PCSK9 catalytic domain (153-421): design, synthesis and biochemical evaluation. Eur J Med Chem. 2015; 92: 890–907. DOI: 10.1016/j.ejmech.2015.01.022
  46. Mayer G., Poirier S., Seidah N.G. Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels. J Biol Chem. 2008; 283: 31791–801. DOI: 10.1074/jbc.m805971200
  47. Seidah N.G., Poirier S., Denis M. et al. Annexin A2 is a natural extrahepatic inhibitor of the PCSK9-induced LDL receptor degradation. PLoS One. 2012; 7: e41865. DOI: 10.1371/journal.pone.0041865
  48. Ly K., Saavedra Y.G., Canuel M. et al. Annexin A2 reduces PCSK9 protein levels via a translational mechanism and interacts with the M1 and M2 domains of PCSK9. J Biol Chem. 2014; 289: 17732–46. DOI: 10.1074/jbc.M113.541094
  49. Chackerian B., Remaley A. Vaccine strategies for lowering LDL by immunization against proprotein convertase subtilisin/kexin type 9. Curr Opin Lipidol. 2016; 27: 345–50. DOI: 10.1097/mol.0000000000000312
  50. Landlinger C., Pouwer M.G., Juno C. et al. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur Heart J. 2017; 38: 2499–507. DOI: 10.1093/eurheartj/ehx260
  51. Galabova G., Brunner S., Winsauer G. et al. Peptide-based anti-PCSK9 vaccines - an approach for long-term LDLc management. PLoS One. 2014; 9: e114469. DOI: 10.1371/journal.pone.0114469
  52. Crossey E., Amar M.J.A., Sampson M. et al. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine. 2015; 33: 5747–55. DOI: 10.1016/j.vaccine.2015.09.044
  53. Civeira F., Jarauta E. Vaccine against PCSK9: the natural strategy from passive to active immunization for the prevention of atherosclerosis. J Thorac Dis. 2017; 9: 4291–4. DOI: 10.21037/jtd.2017.10.18
  54. Чаулин А.М., Мазаев А.Ю., Александров А.Г. Роль пропротеин конвертазы субтилизин/кексин типа 9 (pcsk-9) в метаболизме холестерина и новые возможности липидкорригующей терапии. Международный научно-исследовательский журнал. 2019; 4–1 (82): 124–6 [Chaulin A.M., Mazaev A.Yu., Aleksandrov A.G. The role of proprotein convertase subtilisin/kexin of type 9 (pcsk-9) in cholesterol metabolism and new opportunities of lipid corrective therapy. International Research Journal. 2019; 4–1 (82): 124–6 (in Russ.)]. DOI: 10.23670/IRJ.2019.82.4.025