COVID-19: pathogenetic aspects

DOI: https://doi.org/10.29296/25877305-2022-10-01
Issue: 
10
Year: 
2022

Professor M. Akhmedova(1), MD; Professor O. Burgasova(2), MD; I. Imamova(1), Candidate of Medical Sciences; M. Maksudova(1), Candidate of Medical Sciences
1-Tashkent Medical Academy, Tashkent, Uzbekistan
2-Peoples’ Friendship University of Russia, Moscow

Understanding the pathogenetic aspects of COVID-19, which affect the development of the disease and its complications, will be able to improve the medical care provided. The paper considers a relationship between the trigger of release of pro-inflammatory cytokines and the development of infiltration in endothelial cells and between microvascular dysfunction and an increase in respiratory failure. Based on the data available in the literature, the authors describe the trigger of respiratory tract diseases and multiple organ failure, which contribute to COVID-19 progression

Keywords: 
infectious diseases
COVID-19
SARS-CoV-2
pathogenesis



References: 
  1. Shakmaeva M.A., Chernova T.M., Timchenko V.N. et al. Features of a new Coronavirus infection in children of different ages. Children Infections. 2021; 20 (2): 5–9 (in Russ.). DOI: 10.22627/2072-8107-2021-20-2-5-9
  2. Lvov D.K., Alkhovsky S.V. Source of the COVID-19 pandemic: ecology and genetics of coronaviruses (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (subgenus Sarbecovirus), and MERS-CoV (subgenus Merbecovirus). Problems of Virology. 2020; 65 (2): 62–70 (in Russ.). DOI: 10.36233/0507-4088-2020-65-2-62-70
  3. Rumyantsev A.G. Coronavirus infection COVID-19. Scientific challenges and possible ways to treat and prevent the disease. Russian Journal of Pediatric Hematology and Oncology. 2020; 7 (3): 47–53 (in Russ.). DOI: 10.21682/2311-1267-2020-7-3-47-53
  4. Nikiforov V.V., Suranova T.G., Chernobrovkina T.Yu. et al. New Coronavirus Infection (COVID-19): Clinical and Epidemiological Aspects. The Russian Archives of Internal Medicine. 2020; 10 (2): 87–93 (in Russ.). DOI: 10.20514/2226-6704-2020-10-2-87-93
  5. Wang K., Chen W., Zhou Y.S. et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv. 2020. DOI: 10.1101/ 2020.03.14.988345
  6. Kozlov V.A., Tikhonova E.P., Savchenko A.A. et al. Klinicheskaya immunologiya. Prakticheskoe posobie dlya infektsionistov. Krasnoyarsk: Polikor, 2021; 563 р. DOI: 10.17513/np.518
  7. Ryazanov V., Kutsenko V., Sadykova S. et al. Features of computed tomography in diagnostics COVID-19. Vrach. 2022; 33 (4): 53–5 (in Russ.). DOI: 10.29296/25877305-2022-04-07
  8. Wang X., Zheng J., Guo L. et al. Fecal viral shedding in COVID-19 patients: Clinical significance, viral load dynamics and survival analysis. Virus Res. 2020; 289: 198147. DOI: 10.1016/j.virusres.2020.198147
  9. Kudlay D., Shirobokov Ya., Gladunova E. et al. Diagnosis of COVID-19. Methods and problems of virus SARS-CoV-2 detection under pandemic conditions. Vrach. 2020; 31 (8): 5–10. DOI: 10.29296/25877305-2020-08-01
  10. The team of Zhong Nanshan responded that the isolation of SARS-CoV-2 from urine remind us to pay more attention to the cleaning of individuals and families. Guangzhou Daily. Published February, 2020; 22.
  11. Murkamilov I., Aitbaev K., Fomin V. et al. New coronavirus infection (COVID-19) and nephro-cerebrovascular system. The scientific heritage. 2020; 46: 42–9 (in Russ.).
  12. Namazova-Baranova L.S., Baranov A.A. COVID-19 and children. Pulmonologiya. 2020; 30 (5): 609–28 (in Russ.). DOI: 10.18093/0869-0189-2020-30-5-609-628
  13. Ling Y., Xu S.B., Lin Y.X. et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl). 2020; 133 (9): 1039–43. DOI: 10.1097/CM9.0000000000000774
  14. Li Y.C., Bai W.Z., Hashikawa T. The neuroinvasive potential of SARS-CoV-2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020; 92 (6): 552–5. DOI: 10.1002/jmv.25728
  15. Kuster G.M., Pfister O., Burkard T. et al. SARS-CoV2: should inhibitors of the renin-angiotensin system be withdrawn in pa-tients with COVID-19? Eur Heart J. 2020; 41 (19): 1801–3. DOI: 10.1093/eurheartj/ehaa235
  16. Oudit G.Y., Kassiri Z., Jiang C. et al. SARS-coronavirus modulation of myocardial АПФ2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009; 39 (7): 618–25. DOI: 10.1111/j.1365-2362.2009.02153.x
  17. Baig A.M., Khaleeq A., Ali U. et al. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020; 11 (7): 995–8. DOI: 10.1021/acschemneuro.0c00122
  18. Kimura H., Francisco D., Conway M. et al. Type 2 inflammation modulates АПФ2 and TMPRSS2 in airway epithelial cells. J Allergy Clin Immunol. 2020; 146 (1): 80–88.e8. DOI: 10.1016/j.jaci.2020.05.004
  19. Khera R., Clark C., Lu Y. et al. Association of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers with the risk of hospitalization and de at hinhypertensive patients with coronavirus disease-19. Med Rxiv. 2020; 2020.05.17.20104943. DOI: 10.1101/2020.05.17.20104943 [Preprint].
  20. WebMD. Coronavirus in kids and babies. Available at: https://www.webmd.com/lung/coronavirus-covid-19-babies-children#1
  21. Short K.R., Kroeze E.J.B.V., Fouchier R.A.M. et al. Pathogenesis of influenza-induced acute respiratory distress syndrome. Lancet Infect Dis. 2014; 14 (1): 57–69. DOI: 10.1016/ S1473-3099(13)70286-X
  22. Chesnokova N.P., Morrison V.V., Brill' G.E. et al. Lektsiya 7. Dykhatel'naya nedostatochnost', razvivayushchayasya pri narushenii diffuzionnoi sposobnosti legkikh. Patologiya al'veolyarnogo dykhaniya. Scientific review. Medical sciences. 2017; 2: 46–8 (in Russ.). URL: https://science-medicine.ru/ru/article/view?id=976
  23. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497–506. DOI: 10.1016/S0140-6736(20)30183-5
  24. Shi H., Han X., Jiang N. et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020; 20 (4): 425–34. DOI: 10.1016/S1473-3099(20)30086-4
  25. Voronina T.A. Antioxidants/antihypoxants: the missing puzzle piece in effective pathogenetic therapy for COVID-19. Infectious diseases. 2020; 18 (2): 97–102 (in Russ.). DOI: 10.20953/1729-9225-2020-2-97-102
  26. Yi Y., Lagniton P.N.P., Ye S. et al. COVID-19: what has been learned and to be learned about the novel corona virus disease. Int J Biol Sci. 2020; 16 (10): 1753–66. DOI: 10.7150/ijbs.45134
  27. Gorodin V.N., Moysova D.L., Zotov S.V. et al. Role of polymorphisms of genes involved in hemostasis in COVID-19 pathogenesis. Infectious diseases. 2021; 19 (2): 16–26 (in Russ.). DOI: 10.20953/1729-9225-2021-2-16-26
  28. Iba T., Warkentin T.E., Thachil J. et al. Proposal of the Definition for COVID-19-Associated Coagulopathy. J Clin Med. 2021; 10 (2): 191. DOI: 10.3390/jcm10020191
  29. Wool G.D., Miller J.L. The Impact of COVID-19 Disease on Platelets and Coagulation. Pathobiology. 2021; 88 (1): 15–27. DOI: 10.1159/000512007
  30. Léonard-Lorant I., Delabranche X., Séverac F. et al. Acute Pulmonary Embolism in Patients with COVID-19 at CT Angiography and Relationship to d-Dimer Levels. Radiology. 2020; 296 (3): 189–91. DOI: 10.1148/radiol.2020201561
  31. Carsana L., Sonzogni A., Nasr A. et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis. 2020; 20 (10): 1135–40. DOI: 10.1016/S1473-3099(20)30434-5
  32. Fox S.E., Akmatbekov A., Harbert J.L. et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020; 8 (7): 681–6. DOI: 10.1016/S2213-2600(20)30243-5
  33. Wichmann D., Sperhake J.P., Lütgehetmann M. et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Ann Intern Med. 2020; 173 (4): 268–77. DOI: 10.7326/M20-2003
  34. Simbirtsev A.S. Oytokines in the pathogenesis of infectious and noninfectious human diseases. Medical Academic Journal. 2013; 13 (3): 18–41 (in Russ.). DOI: 10.17816/MAJ13318-41
  35. Ngu S.C., Tilg H. COVID-19 and the gastrointestinal tract: more than meets the eye. Gut. 2020; 69 (6): 973–4. DOI: 10.1136/gutjnl-2020-321195
  36. Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395 (10223): 507–13. DOI: 10.1016/S0140-6736(20)30211-7
  37. Tan W., Aboulhosn J. The cardiovascular burden of coronavirus disease 2019 (COVID-19) with a focus on congenital heart disease. Int J Cardiol. 2020; 309: 70–7. DOI: 10.1016/j.ijcard.2020.03.063
  38. Dedov D. Novel coronavirus infection (COVID-19): epidemiology, clinical characteristics of patients, risk of complications, prevention, use of selenium-containing drugs. Vrach. 2022; 33 (5): 58–62 (in Russ.). DOI: 10.29296/25877305-2022-05-12
  39. Bazdyrev E.D. Coronavirus disease: a global problem of the 21st century. Complex Issues of Cardiovascular Diseases. 2020; 9 (2): 6–16 (in Russ.). DOI: 10.17802/2306-1278-2020-9-2-6-16
  40. Veber V.R., Fishman B.B., Kulikov V.E. et al. Variants of associations kliniko-biochemical parameters and cytokines at cirrhosis of liver of viral etiology at of the various levels of portal pressure. HIV Infection and Immunosuppressive Disorders. 2018; 10 (1): 47–53 (in Russ.). DOI: 10.22328/2077-9828-2018-10-1-47-53
  41. Zang R., Gomez Castro M.F., McCune B.T. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. 2020; 5 (47): eabc3582. DOI: 10.1126/sciimmunol.abc3582
  42. Gemmati D., Tisato V. Genetic Hypothesis and harmacogenetics Side of Renin-Angiotensin-System in COVID-19. Genes (Basel). 2020; 11 (9): 1044. DOI: 10.3390/genes11091044
  43. Petrazzuolo A., Le Naour J., Vacchelli E. et al. No impact of cancer and plague-relevant FPR1 polymorphisms on COVID-19. Onco-immunology. 2020; 9 (1): 1857112. DOI: 10.1080/2162402X.2020.1857112
  44. Wenzhong L., Hualan L. COVID-19: Attacksthe1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism. URL: https://chemrxiv.org/articles/COVID19_Disease_ORF8_and_Surface_Glycoprotein_Inhibit_Heme_Metabolism_by_Binding_to_Porphyrin/11938173
  45. Borodulina E.A., Vasneva Zh.P., Borodulin B.E. et al. Hematological indicators for lung damage caused by COVID-19 infection. Russian Clinical Laboratory Diagnostics. 2020; 65 (11): 676–82 (in Russ.). DOI: 10.18821/0869-2084-2020-65-11-676-682
  46. Borodulina E.A., Vasneva Z.P., Vdoushkina E.S. et al. Features of Hematological and Hemostasiological Parameters in Coronavirus Infection COVID-19 and Community-Acquired Pneumonia. Acta Biomedica Scientifica. 2021; 6 (1): 40–7 (in Russ.). DOI: 10.29413/ABS.2021-6.1.6
  47. Borodulina E.A., Yakovleva E.V., Povalyaeva L.V. et al. Comparative study of the serum hepcidin level of patients with pneumonia in COVID-19 and pneumocystis pneumonia. Russian Clinical Laboratory Diagnostics. 2021; 66 (11): 645–9 (in Russ.). DOI: 10.51620/0869-2084-2021-66-11-645-649