HAC (Russian)
RSCI (Russian)
Ulrichsweb (Ulrich’s Periodicals Directory)
Scientific Indexing Services


DOI: https://doi.org/10.29296/25877305-2022-06-05

M. Bazarova; Professor N. Zhernakova, MD
Belgorod State National Research University

The pathogenetic relationship of osteoarthritis (OA) and metabolic syndrome (MetS) in old age is considered. A review of the data shows that the presence of MetS and its individual components is a risk factor for the development of OA in the elderly. The data on the relationship of excessive O-GlcNAcylation, as a result of insulin resistance, with chronic age-related diseases, including type 2 diabetes and OA, are presented. Insulin resistance, MetS and type 2 diabetes mellitus stimulate the development of chronic inflammation. In particular leading to osteoarthritis. OA is considered as a metabolic disorder leading to the onset and progression of a pathological process. Leptin, which is one of the markers of MetS, has been associated with OA pathophysiology. It is concluded that adiponectin and leptin, having both systemic and local effects, are able to influence the vascular wall, the sensitivity of tissues to insulin, glucose metabolism and systemic inflammation, and accompany changes associated with OA. The combination of OA with MetS inevitably leads to a deterioration in the quality of life of elderly patients. This correlation and subsequent discoveries in this area may provide completely new opportunities for finding common therapeutic approaches for the treatment and prevention of these diseases.

metabolic syndrome
insulin resistance
elderly patient

  1. Ouchi N., Parker J.L., Lugus J.J. et al. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011; 11 (2): 85–97. DOI: 10.1038/nri2921
  2. Shibata R., Ouchi N., Ohashi K. et al. The role of adipokines in cardiovascular disease. J Cardiol. 2017; 70 (4): 329–34. DOI: 10.1016/j.jjcc.2017.02.006
  3. Pischon T., Hu F.B., Girman C.J. et al. Plasma total and high molecular weight adiponectin levels and risk of coronary heart disease in women. Atherosclerosis. 2011; 219 (1): 322–9. DOI: 10.1016/j.atherosclerosis.2011.07.011
  4. Kizer J.R., Benkeser D., Arnold A.M. et al. Associations of Total and High-Molecular-Weight Adiponectin with All-Cause and Cardiovascular Mortality in Older Persons. Circulation. 2012; 126 (25): 2951–61. DOI: 10.1161/circulationaha.112.135202
  5. Sharhun O.O. Difficulties in diagnosing metabolic syndrome in clinical practice. NovaInfo. 2016; 57 (2): 436–41 (in Russ.). Available at: novainfo.ru/article/9739 (accessed 22 April 2022)
  6. Tanyanskiy D.A., Denisenko A.D. The influence of adiponectin on carbohydrates, lipids, and lipoproteins metabolism: analysis of signaling mechanisms. Obesity and metabolism. 2021; 18 (2): 103–11. (in Russ.). DOI: 10.14341/omet12754
  7. Razgildina N.D., Brovin D.L., Pobozheva I.A. et al. Adiponectine gene expression in subcutaneous and intra-abdominal adipose tissue in women with varying degrees of obesity. Cytology. 2018; 60 (7): 531–5 (in Russ.). DOI: 10.31116/tsitol.2018.07.08
  8. Kakino A., Fujita Y., Ke L.H. et al. Adiponectin forms a complex with atherogenic LDL and inhibits its downstream effects. J Lipid Res. 2021; 62: 100001. DOI: 10.1194/jlr.ra120000767
  9. Gao Ho-Y., Zhao C.W., Liu B. et al. An update on the association between metabolic syndrome and osteoarthritis and on the potential role of leptin in osteoarthritis. Cytokine. 2020; 129: 155043. DOI: 10.1016/j.cyto.2020.155043
  10. Yan M., Zhang J., Yang H. et al. The role of leptin in osteoarthritis. Medicine. 2018; 9 7(14): e0257. DOI: 10.1097/MD.0000000000010257
  11. Mancuso P., Bouchard B. The Impact of Aging on Adipose Function and Adipokine Synthesis. Front Endocrinol. 2019; 10: 137. DOI: 10.3389/fendo.2019.00137
  12. Lazebnik L.B., Radchenko V.G., Dzhadhav S.N. et al. Systemic infl ammation and non-alcoholic fatty liver disease. Experimental and Clinical Gastroenterology. 2019; 165 (5): 29–41 (in Russ.). DOI: 10.31146/1682-8658-ecg-165-5-29-41
  13. Lazarus M.B., Jiang J., Gloster T.M. et al. Structural snapshots of the reaction coordinate for O-GlcNAc transferase. Nat Chem Biol. 2012; 8 (12): 966–8. DOI: 10.1038/nchembio.1109
  14. Whelan S.A., Dias W.B., Thiruneelakantapillai L. et al. Regulation of Insulin Receptor Substrate 1 (IRS-1)/AKT Kinase-mediated Insulin Signaling by O-Linked β-N-Acetylglucosamine in 3T3-L1 Adipocytes. J Biol Chem. 2010; 285 (8): 5204–11. DOI: 10.1074/jbc.m109.077818
  15. Shi H., Munk A., Nielsen T.S. et al. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity. Mol Metab. 2018; 11: 160–77. DOI: 10.1016/j.molmet.2018.02.010
  16. Banerjee P.S., Lagerlof O., Hart G.W. Roles of O-GlcNAc in chronic diseases of aging. Mol Aspects Med. 2016; 51: 1–15. DOI: 10.1016/j.mam.2016.05.005
  17. Lorenzo C., Festa A., Hanley A.J. et al. Novel Protein Glycan–Derived Markers of Systemic Inflammation and C-Reactive Protein in Relation to Glycemia, Insulin Resistance, and Insulin Secretion. Diabetes Care. 2017; 40 (3): 375–82. DOI: 10.2337/dc16-1569
  18. Valdes A.M. Metabolic syndrome and osteoarthritis pain: common molecular mechanisms and potential therapeutic implications. Osteoarthritis Cartilage. 2020; 28 (1): 7–9. DOI: 10.1016/j.joca.2019.06.015
  19. Kurygin A.G., Kratnov A.E. AB0146 Oxidative stress experiment with sinovitic and periostal acupuncture influence. Ann Rheum Dis. 2001; 60( 1): 326–9. DOI: 10.1136/annrheumdis-2001.408
  20. Kratnov A.E., Kuryleva K.V., Kratnov A.A. The relationship of primary osteoarthritis and metabolic syndrome. Clinical medicine. 2006; 6: 42–6 (in Russ.).
  21. Masuko K., Murata M., Suematsu N. et al. A metabolic aspect of osteoarthritis: lipid as a possible contributor to the pathogenesis of cartilage degradation. Clin Exp Rheumatol. 2009; 27 (2): 347–53.
  22. Yusuf E., Nelissen R.G., Ioan-Facsinay A. et al. Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann Rheum Dis. 2010; 69 (4): 761–5. DOI: 10.1136/ard.2008.106930
  23. Garcia-Gil M., Reyes C., Ramos R. et al. Serum Lipid Levels and Risk Of Hand Osteoarthritis: The Chingford Prospective Cohort Study. Scientific Reports. 2010; 7 (1): 3147. DOI: 10.1038/s41598-017-03317-4
  24. Cho B.W., Kim D.S., Kwon H.M. et al. Cross-Sectional Association between Hypercholesterolemia and Knee Pain in the Elderly with Radiographic Knee Osteoarthritis: Data from the Korean National Health and Nutritional Examination Survey. Clin Med. 2021; 10 (5): 933. DOI: 10.3390/jcm10050933
  25. Nasonova V.A., Mendel O.I., Denisov L.N. et al Osteoarthrosis and obesity: clinical and pathogenetic associations. The Russian Journal of Preventive Medici. 2011; 1: 29–37 (in Russ.).
  26. Vasilyeva L.V., Lakhin D.I. Influence of metabolic syndrome on the clinical picture of osteoarthrosis. Medical news of North Caucasus. 2017; 12 (1): 8–10 (in Russ.). DOI: 10.14300/mnnc.2017.12002
  27. Vasilieva L.V., Lakhin D.I. Clinical features of osteoarthritis in patients with metabolic syndrome. Terapevticheskii Arkhiv. 2017; 89 (5): 65–8 (in Russ.). DOI: 10.17116/terarkh201789565-68
  28. Oganov R.G., Simanenkov V.I., Bakulin I.G. et al. Comorbidities in clinical practice. algorithms for diagnostics and treatment. Cardiovascular Therapy and Prevention. 2019; 18 (1): 5–66 (in Russ.). DOI: 10.15829/1728-8800-2019-1-5-66
  29. Krasilov A.A., Prokofiev D.A., Kosyura S.D. et al. Influence of diet on lipid profile in patients with osteoarthritis before endoprosthesis of large joints of lower extremities. Medical alphabet. 2017; 1 (4): 48–9 (in Russ.).
  30. Reginato A.M., Riera H., Vera M. et al. Osteoarthritis in Latin America. J Clin Rheumatol. 2015; 21 (8): 391–7. DOI: 10.1097/rhu.0000000000000281
  31. Torshin I.Yu., Gromova O.A., Lila A.M. et al. The results of postgenomic analysis of a glucosamine sulfate molecule indicate the prospects of treatment for comorbidities. Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2018; 12 (4): 129–36 (in Russ.). DOI: 10.14412/1996-7012-2018-4-129-136
  32. Gromova O.A., Torshin I.lu., Lila A.M. et al. On the safety of glucosamine sulfate in patients with insulin resistance. Consilium Medicum. 2019; 21 (4): 75–83 (in Russ.). DOI: 10.26442/20751753.2019.4.190309
  33. Bianchi L., Volpano S. Muscule dysfunction in type 2 diabetes: a major threat to patient’s mobility and independence. Acta Diabetologica. 2016; 53 (6): 879–89. DOI: 10.1007/s00592-016-0880-y
  34. Jafari Nasabian P., Inglis J.E., Reilly W. et al. Aging human body: Changes in bone, muscle and body fat with consequent changes in nutrient intake. J Endocrinol. 2017; 234 (1): R37-51. DOI: 10.1530/joe-16-0603
  35. Gielen E., Bergmann P., Bruyere O. et al. Osteoporosis in Frail Patients: A Consensus Paper of the Belgian Bone Club. Calcif Tissue Int. 2017; 101 (2): 111–3. DOI: 10.1007/s00223-017-0266-3
  36. Pan F., Tian J., Cicuttini F. et al. Metabolic syndrome and trajectory of knee pain in older adults. Osteoarthritis Cartilage. 2020; 28 (1): 45–52. DOI: 10.1016/j.joca.2019.05.030
  37. Finageev S.A., Korolik O.D., Polyakova Yu.V. et al. Circulating visfatin/Nampt levels in patients with osteoarthritis and comorbid diseases. The Russian Journal of Preventive Medicine. 2021; 24 (8): 44–8 (in Russ.). DOI: 10.17116/profmed20212408144
  38. Panchenko A. Effective analgesia in the treatment of diseases of the musculoskeletal system. Possible ways of solving the problem. Glavnyi vrach Yuga Rossii. 2017; 4 (57): 45–9 (in Russ.).
  39. Khabibulina M. Dysrhythmias in hypoestrogenemia with metabolically healthy obesity. Vrach. 2017; 9: 55–8 (in Russ.).
  40. Dedov D., Mukailov N., Evtyukhin I. Quality of life and prognosis in patients with AH and CHD with atrial fibrillation. Vrach. 2013; 7: 72–74. (in Russ.).
  41. Dedov D.V., Mazaev V.P., Ryazanova S.V. et al. Study of quality of life in interventional and conservative treatment of patients with stable angina pectoris at long-term follow-up. Cardiovascular Therapy and Prevention. 2014; 13(5): 31–35. DOI 10.15829/1728-8800-2014-5-31-35. (in Russ.).