HAC (Russian)
RSCI (Russian)
Ulrichsweb (Ulrich’s Periodicals Directory)
Scientific Indexing Services


DOI: https://doi.org/10.29296/25877305-2022-06-01

N. Kunitskaya, MD; Professor A. Ariev , MD; V. Nemirovskiy, Candidate of Medical Sciences
I.I. Mechnikov North-Western State Medical University, Saint Petersburg

Introduction. Acute intestinal infections (AII) remain the most common diseases in pediatric patients. The analysis of scientific literature has shown that pharmacotherapy of these diseases in pediatric patients requires an integrated approach and the appointment of drugs of different groups. Therefore, it is important to study the rationality of drug therapy for pediatric patients with AII in a hospital setting. Objective: evaluation of the pharmacotherapy rationality for pediatric patients with AII and development of optimal procurement lists. Material and methods: official sources of information about medicines, orders of the Ministry of Health of the Russian Federation, statistical collections, clinical records of pediatric patients with AII (400). Methods: logical, systematic, grouping, statistical, clinical and economic methods. Results. The results of the analysis of the therapy of pediatric patients with AII are presented. In particular, the range of drugs prescribed in inpatient conditions is determined. Combining the results of ABC-, XYZ- and VEN-methods of assortment analysis, as well as comparing the results of therapy with approved drug lists, allowed to select of the most important drugs for the procurement lists formation. Conclusion. Procurement lists have been developed, including 28 international generic names assigned to various priority groups. The choice of priority positions in the range of purchases makes it possible to acquire the most necessary and important drugs, depending on the volume of financing, and to predict stocks in risk conditions.

uric acid
cardiovascular disease
molecular mechanism
clinical perspective

  1. Alberts B.M., Barber J.S., Sacre S.M. et al. Precipitation of Soluble Uric Acid Is Necessary for In Vitro Activation of the NLRP3 Inflammasome in Primary Human Monocytes. J Rheumatol. 2019; 46 (9): 1141–50. DOI: 10.3899/jrheum.180855
  2. Battelli M.G., Bortolotti M., Polito L. et al. The role of xanthine oxidoreductase and uric acid in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis. 2018; 1864 (8): 2557–65. DOI: 10.1016/j.bbadis.2018.05.003
  3. Bjornstad P., Laffel L., Lynch J. et al. Elevated Serum Uric Acid Is Associated With Greater Risk for Hypertension and Diabetic Kidney Diseases in Obese Adolescents With Type 2 Diabetes: An Observational Analysis From the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) Study. Diabetes Care. 2019; 42 (6): 1120–8. DOI: 10.2337/dc18-2147
  4. Black-Maier E., Daubert J.P. Editorial Commentary: Prevention and treatment of atrial fibrillation: Is hyperuricemia the next target? Trends Cardiovasc. Med. 2019; 29 (1): 48–9. DOI: 10.1016/j.tcm.2018.07.006
  5. Borgi L., McMullan C., Wohlhueter A. et al. Effect of Uric Acid-Lowering Agents on Endothelial Function: A Randomized, Double-Blind, Placebo-Controlled Trial. Hypertension. 2017; 69 (2): 243–8. DOI: 10.1161/HYPERTENSIONAHA.116.08488
  6. Braga F., Pasqualetti S., Ferraro S., et al. Hyperuricemia as risk factor for coronary heart disease incidence and mortality in the general population: a systematic review and meta-analysis. Clin Chem Lab Med. 2016; 54 (1): 7–15. DOI: 10.1515/cclm-2015-0523
  7. Cai W., Duan X.M., Liu Y. et al. Uric Acid Induces Endothelial Dysfunction by Activating the HMGB1/RAGE Signaling Pathway. BioMed Res Int. 2017; 2017: 4391920. DOI: 10.1155/2017/4391920
  8. Canpolat U., Aytemir K., Yorgun H. et al. Usefulness of serum uric acid level to predict atrial fibrillation recurrence after cryoballoon-based catheter ablation. Europace. 2014; 16 (12): 1731–7. DOI: 10.1093/europace/euu198
  9. Chen Y., Xia Y., Han X. et al. Association between serum uric acid and atrial fibrillation: a cross-sectional communitybased study in China. BMJ Open. 2017; 7 (12): e019037. DOI:10.1136/bmjopen-2017-019037
  10. Chen X., Umeh C.C., Tainsh R.E. et al. Dissociation between urate and blood pressure in mice and in people with early Parkinson’s disease. EBioMedicine. 2018; 37: 259–68. DOI: 10.1016/j.ebiom.2018.10.039
  11. Chen C.H., Chen C.B., Chang C.J. et al. Hypersensitivity and Cardiovascular Risks Related to Allopurinol and Febuxostat Therapy in Asians: A Population-Based Cohort Study and Meta-Analysis. Clin Pharmacol Ther. 2019; 106 (2): 391–401. DOI: 10.1002/cpt.1377
  12. Dai X.M., Wei L., Ma L.L. et al. Serum uric acid and its relationship with cardiovascular risk profile in Chinese patients with early-onset coronary artery disease. Clin Rheumatol. 2015; 34 (9): 1605–11. DOI: 10.1007/s10067-015-2878-1
  13. Grayson P.C., Kim S.Y., LaValley M. et al. Hyperuricemia and incident hypertension: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2011; 63 (1): 102–10. DOI: 10.1002/acr.20344
  14. Hao Y., Li H., Cao Y. et al. Uricase and Horseradish Peroxidase Hybrid CaHPO(4) Nanoflower Integrated with Transcutaneous Patches for Treatment of Hyperuricemia. J BioMed Nanotechnol. 2019; 15 (5): 951–65. DOI: 10.1166/jbn.2019.2752
  15. Huang H., Huang B., Li Y. et al. Uric acid and risk of heart failure: a systematic review and meta-analysis. Eur J Heart Fail. 2014; 16 (1): 15–24. DOI: 10.1093/eurjhf/hft132
  16. Huang T.T., Hao D.L., Wu B.N. et al. Uric acid demonstrates neuroprotective effect on Parkinson’s disease mice through Nrf2- ARE signaling pathway. Biochem Biophys Res Commun. 2017; 493 (4): 1443–9. DOI: 10.1016/j.bbrc.2017.10.004
  17. Jadhav S.N., Radchenko V.G., Seliverstov P.V. et al. Importance of insulin resistance in patients with nonalcoholic fatty liver disease and diastolic dysfunction of the heart. Preventive and clinical medicine. 2019; 2 (71): 52–9.
  18. Johnson R.J., Bakris G.L., Borghi C. et al. Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and Cardiovascular Disease: Report of a Scientific Workshop Organized by the National Kidney Foundation. Am J Kidney Dis. 2018; 71 (6): 851–65. DOI: 10.1053/j.ajkd.2017.12.009
  19. Johnson, R.J., Choi H.K., Yeo A.E. et al. Pegloticase Treatment Significantly Decreases Blood Pressure in Patients With Chronic Gout. Hypertension. 2019; 74 (1): 95–101. DOI: 10.1161/HYPERTENSIONAHA.119.12727
  20. Jun J.E., Lee Y.B., Lee S.E. et al. Elevated serum uric acid predicts the development of moderate coronary artery calcification independent of conventional cardiovascular risk factors. Atherosclerosis. 2018; 272: 233–9. DOI: 10.1016/j.atherosclerosis.2018.02.014
  21. Khaliq O.P., Konoshita T., Moodley J. et al. The Role of Uric Acid in Preeclampsia: Is Uric Acid a Causative Factor or a Sign of Preeclampsia? Curr Hypertens Rep. 2018; 20 (9): 80. DOI: 10.1007/s11906-018-0878-7
  22. Kim S.K., Choe J.Y., Park K.Y. Anti-inflammatory effect of artemisinin on uric acid-induced NLRP3 inflammasome activation through blocking interaction between NLRP3 and NEK7. Biochem Biophys Res Commun. 2019; 517 (2): 338–45. DOI: 10.1016/j.bbrc.2019.07.087
  23. Kimura Y., Yanagida T., Onda A. et al. Soluble Uric Acid Promotes Atherosclerosis via AMPK (AMPActivated Protein Kinase)-Mediated Inflammation. Arterioscler Thromb Vasc Biol. 2020; 40 (3): 570–82. DOI: 10.1161/ATVBAHA.119.313224
  24. Klisic A., Kocic G., Kavaric N. et al. Xanthine oxidase and uric acid as independent predictors of albuminuria in patients with diabetes mellitus type 2. Clin Exp Med. 2018; 18 (2): 283–90. DOI: 10.1007/s10238-017-0483-0
  25. Kobayashi N., Asai K., Tsurumi M. et al. Impact of Accumulated Serum Uric Acid on Coronary Culprit Lesion Morphology Determined by Optical Coherence Tomography and Cardiac Outcomes in Patients with Acute Coronary Syndrome. Cardiology. 2018; 141 (4): 190–8. DOI: 10.1159/000496053
  26. Kramer F., Voss S., Roessig L. et al. Evaluation of high-sensitivity C-reactive protein and uric acid in vericiguattreated patients with heart failure with reduced ejection fraction. Eur J Heart Fail. 2020; 22 (9): 1675–83. DOI: 10.1002/ejhf.1787
  27. Kuwabara M., Borghi C., Cicero A.F.G. et al. Elevated serum uric acid increases risks for developing high LDL cholesterol and hypertriglyceridemia: A five-year cohort study in Japan. Int J Cardiol. 2018; 261: 183–8. DOI: 10.1016/j.ijcard.2018.03.045
  28. Kuwabara M., Hisatome I., Niwa K. et al. Uric Acid Is a Strong Risk Marker for Developing Hypertension From Prehypertension: A 5-Year Japanese Cohort Study. Hypertension. 2018; 71 (1): 78–86. DOI: 10.1161/HYPERTENSIONAHA.117.10370
  29. Li Z., Shen Y., Chen Y. et al. High Uric Acid Inhibits Cardiomyocyte Viability Through the ERK/P38 Pathway via Oxidative Stress. Cell Physiol Biochem. 2018; 45 (3): 1156–64. DOI: 10.1159/000487356
  30. Li H., Qian F., Liu H. et al. Elevated Uric Acid Levels Promote Vascular Smooth Muscle Cells (VSMC) Proliferation via an Nod-Like Receptor Protein 3 (NLRP3)-Inflammasome-Dependent Mechanism. Med Sci Monit. 2019; 25: 8457–64. DOI: 10.12659/MSM.916667
  31. Li M., Hu X., Fan Y. et al. Hyperuricemia and the risk for coronary heart disease morbidity and mortality a systematic review and dose-response meta-analysis. Sci Rep. 2016; 6: 19520. DOI: 10.1038/srep19520
  32. Lin W.D., Deng H., Guo P. et al. High prevalence of hyperuricaemia and its impact on non-valvular atrial fibrillation: the cross-sectional Guangzhou (China) Heart Study. BMJ Open. 2019; 9 (5), e028007. DOI: 10.1136/bmjopen-2018-028007
  33. Lu J., Sun M., Wu X. et al. Urate-lowering therapy alleviates atherosclerosis inflammatory response factors and neointimal lesions in a mouse model of induced carotid atherosclerosis. FEBS J. 2019; 286 (7): 1346–59. DOI: 10.1111/febs.14768
  34. Lu J., He Y., Cui L. et al. Hyperuricemia Predisposes to the Onset of Diabetes via Promoting Pancreatic beta-Cell Death in Uricase-Deficient Male Mice. Diabetes. 2020; 69 (6): 1149–63. DOI: 10.2337/db19-0704
  35. Mantovani A., Rigolon R., Civettini A. et al. Hyperuricemia is associated with an increased prevalence of paroxysmal atrial fibrillation in patients with type 2 diabetes referred for clinically indicated 24-h Holter monitoring. J Endocrinol Invest. 2018; 41 (2): 223–31. DOI: 10.1007/s40618-017-0729-4
  36. Maruhashi T., Hisatome I., Kihara Y. et al. Hyperuricemia and endothelial function: From molecular background to clinical perspectives. Atherosclerosis. 2018; 278: 226–31. DOI: 10.1016/j.atherosclerosis.2018.10.007
  37. McMurray J.J.V., Solomon S.D., Inzucchi S.E. et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019; 381 (21): 1995–2008. DOI: 10.1056/NEJMoa1911303
  38. Mortada I. Hyperuricemia, Type 2 Diabetes Mellitus, and Hypertension: an Emerging Association. Curr Hypertens Rep. 2017; 19 (9): 69. DOI: 10.1007/s11906-017-0770-x
  39. Nidorf M., Jelinek M. Serendipity: How the search for meaning of serum uric acid might lead to the repurposing of an old drug in patients with cardiovascular disease. Eur J Prev Cardiol. 2018; 25 (3): 231–2. DOI: 10.1177/2047487317749039
  40. Pak S., Yatsynovich Y., Valencia D. et al. Serum Uric Acid and Atrial Fibrillation: Meta-analysis. Crit Pathw Cardiol. 2018; 17 (3): 161–6. DOI: 10.1097/HPC.0000000000000150
  41. Palazzuoli A., Ruocco G., De Vivo O. et al. Prevalence of Hyperuricemia in Patients With Acute Heart Failure With Either Reduced or Preserved Ejection Fraction. Am J Cardiol. 2017; 120 (7): 1146–50. DOI: 10.1016/j.amjcard.2017.06.057
  42. Pavlusova M., Jarkovsky J., Benesova K. et al. Hyperuricemia treatment in acute heart failure patients does not improve their long-term prognosis: A propensity score matched analysis from the AHEAD registry. Clin Cardiol. 2019; 42 (8): 720–7. DOI: 10.1002/clc.23197
  43. Sakr H.I., Khowailed A.A., Al-Fakharany R.S. et al. Serum Uric Acid Level as a Predictive Biomarker of Gestational Hypertension Severity; A Prospective Observational Case-Control Study. Rev Recent Clin Trials. 2020; 15 (3): 227–39. DOI: 10.2174/1574887115666200709142119
  44. Singh J.A., Cleveland J. Allopurinol and the risk of incident peripheral arterial disease in the elderly: a US Medicare claims data study. Rheumatol (Oxford). 2018; 57 (3): 451–61. DOI: 10.1093/rheumatology/kex232
  45. Singh G., Lingala B., Mithal A. Gout and hyperuricaemia in the USA: prevalence and trends. Rheumatol (Oxford). 2019; 58 (12): 2177–80. DOI: 10.1093/rheumatology/kez196
  46. Sun H.L., Pei D., Lue K.H. et al. Uric Acid Levels Can Predict Metabolic Syndrome and Hypertension in Adolescents: A 10-Year Longitudinal Study. PloS One. 2015; 10 (11): e0143786. DOI: 10.1371/journal.pone.0143786
  47. Taufiq F., Maharani N., Li P. et al. Uric Acid-Induced Enhancements of Kv1.5 Protein Expression and Channel Activity via the Akt-HSF1-Hsp70 Pathway in HL-1 Atrial Myocytes. Circ J. 2019; 83 (4): 718–26. DOI: 10.1253/circj.CJ-18-1088
  48. Tomiyama H., Shiina K., Vlachopoulos C. et al. Involvement of Arterial Stiffness and Inflammation in Hyperuricemia-Related Development of Hypertension. Hypertension. 2018; 72 (3): 739–45. DOI: 10.1161/HYPERTENSIONAHA.118.11390
  49. Vaduganathan M., Greene S.J., Ambrosy A.P. et al. Relation of serum uric acid levels and outcomes among patients hospitalized for worsening heart failure with reduced ejection fraction (from the efficacy of vasopressin antagonism in heart failure outcome study with tolvaptan trial). Am J Cardiol. 2014; 114 (11): 1713–21. DOI: 10.1016/j.amjcard.2014.09.008
  50. Virdis A., Masi S., Casiglia E. et al. Identification of the Uric Acid Thresholds Predicting an Increased Total and Cardiovascular Mortality Over 20 Years. Hypertension. 2020; 75 (2): 302–8. DOI: 10.1161/HYPERTENSIONAHA.119.13643
  51. von Lueder T.G., Girerd N., Atar D. et al. Serum uric acid is associated with mortality and heart failure hospitalizations in patients with complicated myocardial infarction: findings from the High-Risk Myocardial Infarction Database Initiative. Eur J Heart Fail. 2015; 17 (11): 1144–51. DOI: 10.1002/ejhf.419
  52. Wang G.L., Yuan H.M., Wang Z.F. et al. Soluble Uric Acid Activates NLRP3 Inflammasome in Myocardial Cells Through Down-regulating UCP2. Sichuan Da Xue Xue Bao Yi Xue Ban. 2018; 49 (4): 512–7.
  53. Wang I.K., Chen J.H., Muo C.H. et al. Subsequent risk of gout for women with hypertensive disorders in pregnancy: a retrospective cohort study. J Hypertens. 2016; 34 (5): 914–9. DOI: 10.1097/HJH.0000000000000888
  54. White W.B., Saag K.G., Becker M.A. et al. Cardiovascular Safety of Febuxostat or Allopurinol in Patients with Gout. N Engl J Med. 2018; 378 (13): 1200–10. DOI: 10.1056/NEJMoa1710895
  55. Wilcox C.S., Shen W., Boulton D.W. et al. Interaction Between the Sodium-Glucose-Linked Transporter 2 Inhibitor Dapagliflozin and the Loop Diuretic Bumetanide in Normal Human Subjects. J Am Heart Assoc. 2018; 7 (4): e007046. DOI: 10.1161/JAHA.117.007046
  56. Wiviott S.D., Raz I., Bonaca M.P. et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019; 380 (4): 347–57. DOI: 10.1056/NEJMoa1812389
  57. Xin Y., Guo Y., Li Y. et al. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus: A systematic review with an indirect comparison meta-analysis. Saudi J Biol Sci. 2019; 26 (2): 421–6. DOI: 10.1016/j.sjbs.2018.11.013
  58. Yan M., Chen K., He L. et al. Uric Acid Induces Cardiomyocyte Apoptosis via Activation of Calpain-1 and Endoplasmic Reticulum Stress. Cell Physiol Biochem. 2018; 45 (5): 2122–35. DOI: 10.1159/000488048
  59. Yin W., Zhou Q.L., OuYang S.X. et al. Uric acid regulates NLRP3/IL-1beta signaling pathway and further induces vascular endothelial cells injury in early CKD through ROS activation and K(+) efflux. BMC Nephrol. 2019; 20 (1): 319. DOI: 10.1186/s12882-019-1506-8
  60. Zhang C.H., Huang D.S., Shen D. et al. Association Between Serum Uric Acid Levels and Atrial Fibrillation Risk. Cell Physiol Biochem. 2016; 38 (4): 1589–95. DOI: 10.1159/000443099