HAC (Russian)
RSCI (Russian)
Ulrichsweb (Ulrich’s Periodicals Directory)
Scientific Indexing Services

Bacteriophages: past, present, future

DOI: https://doi.org/10.29296/25877305-2022-02-03

L. Konkova(1); Professor L. Kraeva(1, 2), MD; Professor O. Burgasova(3, 4), MD; S. Dolinny(5)
(1)Pasteur Institute of Epidemiology and Microbiology, Saint-Petersburg (2)S.M. Kirov Military Medical
Academy, Saint-Petersburg (3)Russian Peoples Friendship University, Moscow (4)N.F. Gamaleya National
Research Center for Epidemiology and Microbiology, Moscow (5)Infectious Diseases Clinical Hospital One,
Moscow Department of Public Health

In recent years, there has been a catastrophic increase in the resistance of bacterial strains to antibacterial drugs. Millions of deaths per year associated with antimicrobial resistance are already being reported worldwide. The spread of the pandemic new coronavirus infection COVID-19 has contributed to a significant increase in the burden on health care facilities, overuse of antibiotics, which in turn has led to an even greater spread of resistant strains in hospitals. At the same time, numerous successful results of bacteriophages use in clinical and preventive medicine give the hope for their effective use as an alternative to ethiotropic therapy, especially in cases of the threat of resistant bacterial strains spread. Further research into the biological properties of bacteriophages and their interaction with bacterial and human cells will make it possible to treat and prevent many infectious diseases with bacteriophages.

infectious diseases
antibiotic resistance

  1. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022. DOI: 10.1016/S0140-6736(21)02724-0. Available at: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02724-0/fulltext
  2. Brusina E.B., Drozdova O.M., Aleshkin A.V. i dr. Problemy kompleksnogo primenenija bakteriofagov dlja profilaktiki i lechenija. Epidemiologija i infektsionnye bolezni. 2018; 3: 11–5 [Brusina E.B., Drozdova O.M., Akeshkin A.V. et al. Problems of complex use of bacteriophages for prevention and treatment. Epidemiology and Infectious diseases. 2018; 3: 11–5 (in Russ.)]. DOI: 10.18565/epidem.2018.3.11-5
  3. Bondarenko V.M. Rol' uslovno-patogennyh bakterij kishechnika v poliorgannoj patologii cheloveka. M.: Triada, 2007; s. 60. [Bondarenko V.M. Rol’ uslovno-patogennykh bakteriy kishechnika v poliorgannoy patologii cheloveka. M.: Triada, 2007; s. 60. (in Russ.)].
  4. Bondarenko V.M. Klinicheskij effekt i puti ratsional'no ispol'zovanija lechebnyh bakteriofagov v meditsinskoj praktike. Farmateka. 2011; 1 (214): 29–34 [Bondarenko V.M. Clinical effect and ways to efficient use of therapeutic bacteriophage preparation in medical practice. Pharmateka. 2011; 1 (214): 29–34 (in Russ.)].
  5. Letarov A.V. Sovremennye kontseptsii biologii bakteriofagov. M.: TD DeLi, 2019; 384 s. [Letarov A.V. Sovremennie koncepcii biologii bakteriophagov. M.: TD DeLi, 2019; p. 384 (in Russ.)].
  6. Campbell A. The future of bacteriophage biology. Nat Rev Genet. 2003; 4 (6): 471–7. DOI: 10.1038/nrg1089.
  7. Ackermann H.W. 5500 Phages examined in the electron microscope. Arch Virol. 2007; 152 (2): 227–43. DOI: 10.1007/s00705-006-0849-1
  8. Fokine A. Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry. Proc Natl Acad Sci. 2005; 102 (20): 7163–8. DOI: 10.1073/pnas.0502164102
  9. Storms Z.J., Sauvageau D. Modeling tailed bacteriophage adsorption: Insight into mechanisms. Virology. 2015; 485: 355–62. DOI: 10.1016/j.virol.2015.08.007
  10. Silva B., Storms Z., Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett. 2016; 363 (4): fnw002. DOI: 10.1093/femsle/fnw002
  11. Leiman P.G., Shneider M.M. Contractile tail machines of bacteriophages. Adv Exp Med Biol. 2012; 726: 93–114. DOI: 10.1007/978-1-4614-0980-9_5
  12. Akimkin V.G., Trunilina R.A., Shahlin E.V. Kliniko- epidemiologicheskie osobennosti nozokomial'nogo sal'monneleza u bol'nyh s hirurgicheskoj patologiej. Magnitogorsk: OOO «AS», 2008; 172 s. [Akimkin V.G., Trunilina R.A., Shachlin E.V. Kliniko-epidemiologicheskie osobennosti nosokomial’nogo salmoneleza u bol’nykh s khirurgicheskoy patologiey. Magnitogorsk: AS, 2008; 172 p. (in Russ.)].
  13. Kuchment A. The Forgotten Cure. The Past and Future of Phage Therapy. Springer Science & Business Media, 2011; 136 p. DOI: 10.1007/978-1-4614-0251-0
  14. Chanishvili N. Phage therapy – history from Twort and d’Herelle through Soviet experience to current approaches. Adv Virus Res. 2012; 83: 3–40. DOI: 10.1016/B978-0-12-394438-2.00001-3
  15. Beschastnov V.V., Judanova T.N., Begun S.M. i dr. Ispol'zovanie gidrogelevyh ranevyh pokrytij v kombinatsii s bakteriofagami. Vestnik eksperimental'noj i klinicheskoj hirurgii. 2020; 13 (3): 279–84 [Beschastnov V.V., Yudanova T.N., Begun S.M. et al. Application of Hydrogel Wound Dressings Combined with Bacteriophages. Journal of experimental and clinical surgery. 2020; 13 (3): 279–84 (in Russ)]. DOI: 10.18499/2070-478X-2020-13-3-279-284
  16. Jault P., Leclerc T., Jennes S., et. al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 2019; 19: 35–45. DOI: 10.1016/ S1473-3099(18)30482-1
  17. Morozova V.V., Vlassov V.V., Tikunova N.V. Applications of Bacteriophages in the Treatment of Localized Infections in Humans. Front Microbiol. 2018; 9:1696. DOI: 10.3389/fmicb.2018.01696
  18. Leont'ev A.E., Pavlenko I.V., Kovalishena O.V. i dr. Primenenie fagoterapii v lechenii ozhogovyh bol'nyh. Sovremennye tehnologii v meditsine. 2020; 12 (3): 95–104 [Leontyev A.E., Pavlenko I.V., Kovalishena O.V. et al. Application of Phagotherapy in the Treatment of Burn Patients (Review). Sovrem Tekhnologii Med. 2020; 12 (3): 95–104 (in Russ.)]. DOI 10.17691/stm2020.12.3.12
  19. Rubalskii E., Ruemke S., Salmoukas C. et al. Fibrin glue as a local drug-delivery system for bacteriophage PA5. Sci Rep. 2019; 9 (1): 1–8. DOI: 10.1038/s41598-018-38318-4
  20. Morozova Y.N., Kozlova Y.N., Tikunova N.V. et al. Bacteriophage treatment of infected diabetic foot ulcers. Methods in molecular biology. 2018; 1693: 151–8. DOI 10.1007/978-1-4939-7395-8_13
  21. Donlan R.M. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol. 2009; 17 (2): 66–72. DOI: 10.1016/j.tim.2008.11.002
  22. Herridge P., Shibu P., O’Shea1 J. et. al. Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses. J Med Microbiol. 2020; 69: 176–94. DOI: 10.1099/jmm.0.001141
  23. Duplessis C., Biswas B., Hanisch B. et al. Refractory pseudomonas bacteremia in a 2-year-old sterilized by bacteriophage therapy. J Pediatric Infect Dis Soc. 2018; 7 (3): 253–6. DOI: 10.1093/jpids/pix056
  24. Schooley R.T., Biswas B., Gill J.J. et al. Development and use of personalized bacteriophagebased therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother. 2017; 61 (10): e00954-17. DOI: 10.1128/AAC.00954-17
  25. Ujmajuridze A., Chanishvili N., Goderdzishvili M. et al. Adapted Bacteriophages for Treating Urinary Tract Infections. Front Microbiol. 2018; 9: 1832. DOI: 10.3389/fmicb.2018.01832
  26. Leitner L., Sybesma W., Chanishvili N. et al. Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial. BMC Urol. 2017; 17 (1): 90. DOI: 10.1186/s12894-017-0283-6
  27. Bao J., Wu N., Zeng Y. et al. Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae. Emerg Microbes Infect. 2020; 9 (1): 771–4. DOI: 10.1080/22221751.2020.1747950
  28. Zalewska-Piątek B., Piątek R. Phage Therapy as a Novel Strategy in the Treatment of Urinary Tract Infections Caused by E. coli. Antibiotics (Basel). 2020; 9 (6): 304. DOI: 10.3390/antibiotics9060304
  29. Górski A., Jończyk-Matysiak E., Łusiak-Szelachowska M. et al. Phage Therapy in Prostatitis: Recent Prospects. Front Microbiol. 2018; 9: 1434. DOI: 10.3389/fmicb.2018.01434
  30. Xiong S., Liu X., Deng W. et al. Pharmacological Interventions for Bacterial Prostatitis. Front Pharmacol. 2020; 11: 504. DOI: 10.3389/fphar.2020.00504
  31. LaVergne S., Hamilton T., Biswas B. et al. Phage therapy for a multidrug-resistant Acinetobacter baumannii Craniectomy site infection. Open Forum Infect Dis. 2020; 5 (4): ofy064. DOI: 10.1093/ofid/ofy064
  32. Junghans S., Rojas S.V., Skusa R. et al. Bacteriophages for the Treatment of Graft Infections in Cardiovascular Medicine. Antibiotics. 2021; 10 (12): 1446. DOI: 10.3390/antibiotics10121446
  33. Eskenazi A., Lood C., Wubbolts J. et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nat Commun. 2022; 13: 302. DOI: 10.1038/s41467-021-27656-z
  34. Nir-Paz R., Gelman D., Khouri A. et al. Successful treatment of antibiotic-resistant, polymicrobial bone infection with bacteriophages and antibiotics combination. Clin Infect Dis. 2019; 69 (11): 2015–8. DOI: 10.1093/cid/ciz222
  35. Luong T., Salabarria A., Roach D. Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going? Clin Ther. 2020; 42 (9): 1659–80. DOI: 10.1016/j.clinthera.2020.07.014
  36. Hesse S., Rajaure M., Wall E. et al. Phage Resistance in Multidrug-Resistant Klebsiella pneumoniae ST258 Evolves via Diverse Mutations That Culminate in Impaired Adsorption. mBio. 2020; 11 (1): e02530-19. DOI: 10.1128/mBio.02530-19
  37. Behtereva M.K., Ivanova V.V. Mesto bakteriofagov v terapii infektsionnyh zabolevanij zheludochno-kishechnogo trakta. Consilium medicum. Pediatrija. 2014; 2: 35–40 [Bekhtereva M.K., Ivanova V.V. Mesto bakteriofagov v terapii infektsionnykh zabolevaniy zheludochno kishechnogo trakta. Consilium medicum. Pediatria. 2014; 2: 35–40 (in Russ.)].
  38. Febvre H.P., Rao S., Gindin M. et al. PHAGE Study: Effects of Supplemental Bacteriophage Intake on Inflammation and Gut Microbiota in Healthy Adults. Nutrients. 2019; 11: 666. DOI: 10.3390/nu11030666
  39. Kozlov V.A., Tihonova E.P., Savchenko A.A. i dr. Klinicheskaja immunologija. Prakticheskoe posobie dlja infektsionistov. Krasnojarsk: Polikor, 2021; 563 c. [Kozlov V.A., Tikhonova E.P., Savchenko A.A. et al. Klinicheskaya immunologiya. Prakticheskoe posobie dlya infektsionistov. Krasnoyarsk: Polikor, 2021; 563 c. (in Russ.)].
  40. Barr J.J., Auro R., Furlan M. et al. Bacteriophage adhering to mucus provide a non–host-derived immunity. Proc Natl Acad Sci. 2013; 110 (26): 10771–6. DOI: 10.1073/pnas.1305923110
  41. Anand T., Virmani N., Kumar S. et al. Phage therapy for treatment of virulent Klebsiella pneumoniae infection in a mouse model. J Glob Antimicrob Resist. 2020; 21: 34–41. DOI: 10.1016/j.jgar.2019.09.018