Current approaches to detecting, evaluating, and predicting congenital malformations

DOI: https://doi.org/10.29296/25877305-2021-02-01
Download full text PDF
Issue: 
2
Year: 
2021

T. Pikuza(1); Professor R. Chilova(1), MD; E. Sokova(2), Candidate of Medical Sciences; E.
Zhukova(1), Candidate of Medical Sciences; R. Kazakov(2), Candidate of Biological Sciences (1)I.M. Sechenov
First Moscow State Medical University (Sechenov University), Ministry of Health of Russia (2)Research Center
for Examination of Medical Products, Ministry of Health of Russia, Moscow

The high frequency of embryonic and fetal losses caused by intrauterine malformations (IUMs) and the significant contribution of malformations to the structure of causes of infant mortality, morbidity, and disability define their important medical and social values. The European Surveillance of Congenital Anomalies (EUROCAT) has shown that 1.7 million newborns with IUMs are born annually in the world. The WHO has estimated that annually 303,000 newborns die within 4 weeks of birth worldwide due to congenital anomalies. According to various researchers, the contribution of this pathology to the structure of infant mortality in the Russian Federation is up to 35–40%, whereas the rate of birth of babies with IUMs is 4–6%. The results of numerous studies demonstrate the heterogeneity of the causes of IUMs (genetic, chromosomal, teratogenic, etc.), although the nature of IUMs remains unknown and is multifactorial in most cases (65–70%). Both epidemiological and experimental studies are a source of information to recognize potential risk factors for IUMs and to generate hypotheses for future investigations when studying the interaction between environmental factors and malformations.

Keywords: 
congenital malformations
infant mortality
gene polymorphism
P glycoprotein



It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Skladanovskaja T.V., Sviridova N.I. Poroki razvitija ploda – folat-zavisimaja patologija. Lekarstvennyj vestnik. 2013; 7 (4): 17–20 [Skladanovskaya T.V., Sviridova N.I. Poroki razvitiya ploda – folat-zavisimaya patologiya. Lekarstvennyi vestnik. 2013; 7 (4): 17–20 (in Russ.)].
  2. Kukes V.G., Sokova E.A, Ignat'ev I.V. i dr. Glikoprotein R i zdorov'e ploda. Problemy reproduktsii. 2010; 5: 78–84 [Kukes V.G., Sokova E.A., Ignat’ev I.V. et al. Glycoprotein p and fetal condition. Problemy reproduktsii. 2010; 5: 78–84 (in Russ.)].
  3. Novikova S.V., Zhuchenko L.A. Profilaktika vrozhdennyh porokov razvitija. RMZh. Mat' i ditja. 2015; 1: 25 [Novikova S.V., Zhuchenko L.A. Profilaktika vrozhdennykh porokov razvitiya. RMZh. Mat’ i ditya. 2015; 1: 25 (in Russ.)].
  4. Hamilton B.E., Hoyert, D.L., Martin, J.A. et al. Annual summary of vital statistics: 2010–2011. Pediatrics. 2013; 131: 548–58. DOI: 10.1542/peds.2012-3769
  5. Staud F., Cerveny L., Ceckova M. Pharmacotherapy in pregnancy: effect of ABC and SLC transporters on drug transport across the placenta and fetal drug exposure. J Drug Target. 2012; 20: 736–63. DOI: 10.3109/1061186X.2012.716847
  6. Bloise E., Ortiga-Garvalho T.M., Reis F.M. et al. ATP-binding cassette transporters in reproduction: a new frontier. Hum Reprod Update. 2016; 22: 164–81. DOI: 10.1093/humupd/dmv049
  7. Brayboy L.M., Knapik L.O., Long S. Ovarian hormones modulate multidrug resistance transporter in the ovary. Contracept Reprod Med. 2018; 3: 26. DOI: 10.1186/s40834-018-0076-7
  8. Moisiadis V.G., Matthews S.G. Glucocorticoids and fetal programming part 2: mechanisms. Nat Rev Endocrinol. 2014; 10: 403–11. DOI: 10.1038/nrendo.2014.74
  9. Wang X., Cabrera R.M., Li Y. et al. Functional regulation of P-glycoprotein at the blood-brain barrier in proton-coupled folate transporter (PCFT) mutant mice. FASEB J. 2013; 27 (3): 1167–75. DOI: 10.1096/fj.12-218495
  10. Kerb R. Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Lett. 2006; 234 (1): 4–33. DOI: 10.1016/j.canlet.2005.06.051
  11. Daud A.N.A., Bergman J.E.H., Bakker M.K. et al. Pharmacogenetics of drug-induced birth defects: the role of polymorphisms of placental transporter proteins. Pharmacogenomics. 2014; 15 (7): 1029–41. DOI: 10.2217/pgs.14.62
  12. Obermann-Borst S.A., Isaacs A., Younes Z. et al. General maternal medication use, folic acid, the MDR1 C3435T polymorphism, and the risk of a child with a congenital heart defect. Am J Obstet Gynecol. 2011; 204 (3): 236.e1–236.e8. DOI: 10.1016/j.ajog.2010.10.911
  13. Wang C., Zhou K., Xie L. et al. Maternal Medication Use, Fetal 3435 C>T Polymorphism of the ABCB1 Gene, and Risk of Isolated Septal Defects in a Han Chinese Population. Pediatr Cardiol. 2014; 35 (7): 1132–41. DOI: 10.1007/s00246-014-0906-6