THE USE OF THYMALINE TO CORRECT IMMUNE STATUS DEVIATIONS IN COVID-19 (rationale for the use of drug and clinical case)

DOI: https://doi.org/10.29296/25877305-2020-08-12
Download full text PDF
Issue: 
8
Year: 
2020

S. Lukyanov(1, 5), Candidate of Medical Sciences; Professor B. Kuznik(1, 2), MD; Professor V.
Khavinson(3, 4), Corresponding Member of RAS; Professor K. Shapovalov(1, 5), MD; Yu. Smolyakov(1, 2),
Candidate of Medical Sciences; P. Tereshkov(1, 2), Candidate of Medical Sciences; Yu. Shapovalov(1, 5); V.
Konnov(1, 5), Candidate of Medical Sciences; Professor E. Magen(6), MD (1)Chita State Medical Academy
(2)Innovative Clinic Academy of Health, Chita (3)Saint-Petersburg Institute of Bioregulation and Gerontology
(4)I.P. Pavlov Institute of Physiology, Saint-Petersburg (5)City Clinical Hospital No.1 of the Ministry of
Health of the Trans-Baikal Territory, Chita (6)Ben Gurion University of Negev, Ashdod, Israel

Data on violations of cellular and humoral immunity in severely patients with COVID-19, as well as the hemostatic system were summarized. It has been shown that patients with COVID-19 have leukocytopenia, lymphocytopenia, neutrophilia, as well as a violation of the ratio between individual subpopulations of T-lymphocytes. The content of pro-inflammatory cytokines increases significantly, which leads to the development of a «cytokine storm». At the same time, such patients develop endothelial dysfunction, hypercoagulation, accompanied by an increase in D-dimer with the subsequent development of microangiopathy (MAP), immunothrombosis, disseminated intravascular coagulation (DIC) and multiple organ failure. A case is given of the use of an immunocorrector thymalin in a patient with a severe course of COVID-19, which contributes to the elimination of disorders in the immune system (including «cytokine storm») and hemostasis.

Keywords: 
therapy
infectious diseases
COVID-19
immunity
«cytokine storm»
blood clotting
multiple organ failure
thymalin
heparin



It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Kuznik B.I., Tsybikov N.N. Vzaimosvjaz' mezhdu immunogenezom i sistemoj gemostaza: edinaja sistema zaschity organizma. Uspehi sovremennoj biologii. 1981; 2: 243–60 [Kuznik B.I., Cybikov N.N. Vzaimosvjaz’ mezhdu immunogenezom i sistemoj gemostaza: edinaja sistema zashhity organizma. Uspehi sovremennoj biologii. 1981; 2: 243–60 (in Russ.)].
  2. Kuznik B.I., Vasil'ev V.N., Tsybikov N.N. Immunogenez, gemostaz i nespetsificheskaja rezistentnost' organizma. M.: Meditsina, 1989. 320 s. [Kuznik B.I., Vasil’ev V.N., Cybikov N.N. Immunogenez, gemostaz i nespecificheskaja rezistentnost’ organizma. M.: Medicina, 1989. 320 p. (in Russ.)].
  3. Lin L., Lu L., Cao W. et al. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020; 9 (1): 727–32. DOI: 10.1080/22221751.2020.1746199
  4. Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients With 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323 (11): 1061–9. DOI: 10.1001/jama.2020.1585
  5. Mehta P., McAuley D.F., Brown M. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395 (10229): 1033–4. DOI: 10.1016/S0140-6736(20)30628-0
  6. Gao Y., Li T., Han M. et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020; 92 (7): 791–6. DOI:10.1002/jmv.25770.
  7. McGonagle D., Sharif K., O’Regan A. et al. The Role of Cytokines including interleukin-6 use in COVID-19 pneumonia related macrophage activation syndrome. Autoimmun Rev. 2020; 19 (6): 102537. DOI: 10.1016/j.autrev.2020.102537
  8. Qin C., Zhou L., Hu Z. et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020; 71 (15): 762–8. DOI: 10.1093/ cid/ciaa248
  9. Neurath M.F. Covid-19 and immunomodulation in IBD. Gut. 2020; 69 (7): 1335–42. DOI: 10.1136/gutjnl-2020-321269
  10. Jamilloux Y., Henry T., Belot A. et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020; 19 (7): 102567. DOI: 10.1016/j.autrev.2020.102567
  11. Beristain-Covarrubias N., Perez-Toledo M., Thomas M.R. et al. Understanding infection-induced thrombosis: lessons learned from animal models. Front Immunol. 2019; 10: 2569. DOI: 10.3389/fimmu.2019.02569
  12. Henry B.M., Vikse J., Benoit S. et al. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: a novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta. 2020; 507: 167–73. DOI: 10.1016/j.cca.2020.04.027
  13. Vitkovskij Ju.A., Kuznik B.I., Solpov A.V. Patogeneticheskoe znachenie limfotsitarno-trombotsitarnoj adgezii. Meditsinskaja immunologija. 2006; 8 (5–6): 745–53 [Witkowski Y.A., Kuznik B.I., Solov A.V. Pathogenetic significance of lymphocyte-platelet adhesion. Medical immunology. 2006; 8 (5–6): 745–53 (in Russ.)].
  14. Liu Y., Yang Y., Zhang C. et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020; 63: 364–74. DOI: 10.1007/s11427-020-1643-8
  15. Kuznik B.I., Skipetrov V.P. Formennye elementy krovi, sosudistaja stenka, gemostaz i tromboz. M: Meditsina, 1974; 308 s. [Kuznik B.I., Skipetrov V.P. Formennye jelementy krovi, sosudistaja stenka, gemostaz i tromboz. M: Medicina, 1974; 308 p. (in Russ.)].
  16. Nakamura S., Nakamura I., Ma L. et al. Plasminogen activator inhibitor-1 expression is regulated by the angiotensin type 1 receptor in vivo. Kidney Int. 2000; 58: 251–9. DOI: 10.1046/j.1523-1755.2000.00160.x
  17. Ma J., Weisberg A., Griffin J.P. et al. Plasminogen activator inhibitor-1 deficiency protects against aldosterone-induced glomerular injury. Kidney Int. 2006; 69: 1064–72. DOI: 10.1038/sj.ki.5000201
  18. Keragala C.B., Draxler D.F., McQuilten Z.K. et al. Haemostasis and innate immunity – a complementary relationship: A review of the intricate relationship between coagulation and complement pathways. Br J Haematol. 2018; 180: 782–98. DOI: 10.1111/bjh.15062
  19. Kuznik B.I., Lozhkina A.N. Vzaimosvjaz' sistemy komplementa, kallikrein-kininovoj sistemy i sistemy gemostaza. V kn.: Baluda V.P. i dr. Fiziologicheskie sistemy gemostaza. M., 1995; c. 150–60 [Kuznik B.I., Lozhkina A.N. Vzaimosvjaz’ sistemy komplementa, kallikrein-kininovoj sistemy i sistemy gemostaza. V kn.: Baluda V.P. et al. Fiziologicheskie sistemy gemostaza. M., 1995; s. 150–60 (in Russ.)].
  20. Oehmcke S., Mörgelin M., Herwald H. Activation of the human contact system on neutrophil extracellular traps. J Innate Immun. 2009; 1: 225–30. DOI: 10.1159/000203700
  21. Barnes B.J., Adrover J.M., Baxter-Stoltzfus A. et al , Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020; 217 (6): e20200652. DOI: 10.1084/jem.20200652
  22. Zuo Y., Yalavarthi S., Shi H. et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020: 138999. DOI: 10.1172/jci.insight.138999
  23. Zubairov D.M., Zubairova L.D. Mikrovezikuly v krovi, funktsija i ih rol' v tromboobrazovanii. M.: GEOTAR-Media, 2009; 168 s. [Zubairov D.M., Zubairova L.D. Mikrovezikuly v krovi, funkcija i ih rol’ v tromboobrazovanii. M.: GEOTAR-Media, 2009; 168 p. (in Russ.)].
  24. Joly B.S., Siguret V., Veyradier A. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Med. 2020; 24: 1603–6. DOI: 10.1007/s00134-020-06088-1
  25. Goh K.J., Choong M.C., Cheong E.H. et al. Rapid Progression to Acute Respiratory Distress Syndrome: Review of Current Understanding of Critical Illness from COVID-19 Infection. Ann Acad Med Singapore. 2020; 49 (3): 108–18.
  26. Masic Izet, Naser Nabil, Zildzic Muharem. Public Health Aspects of COVID-19 Infection With Focus on Cardiovascular Disea. Mater Sociomed. 2020; 32 (1): 71–6. DOI: 10.5455/msm. 2020.32.71-76
  27. Zhavoronkov A. Geroprotective and Senoremediative Strategies to Reduce the Comorbidity, Infection Rates, Severity, and Lethality in Gerophilic and Gerolavic Infections. Aging (Albany NY). 2020; 12 (8): 6492–510. DOI: 10.18632/aging.102988
  28. Alijotas-Reig J., Esteve-Valverde E., Belizna C. et al. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review. Autoimmun Rev. 2020; 19 (7): 102569. DOI: 10.1016/j.autrev.2020.102569
  29. Zhang C., Wu Z., Li J.W. et al. The cytokine release syndrome (CRS) of severe COVID-19 and interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020; 28: 105954. DOI: 10.1016/j.ijantimicag.2020.105954
  30. Fomina D.S., Poteshkina N.G., Beloglazova I.P. i dr. Sravnitel'nyj analiz primenenija totsilizumaba pri tjazhelyh COVID-19-assotsiirovannyh pnevmonijah. Pul'monologija. 2020; 30 (2): 151–9 [Fomina D.S., Poteshkina N.G., Beloglazova I.P. et al. Comparative analysis of tocilizumab in severe COVID-19-associated pneumonia in patients of different age groups. Pulmonologiya. 2020; 30 (2): 164–72 (in Russ.)]. DOI: 10.18093/0869-0189-2020-30-2-151-159
  31. Sargiacomo C., Sotgia F., Lisanti M.P. COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection? Aging (Albany NY). 2020; 12 (8): 6511–7. DOI: 10.18632/aging.103001
  32. Alam M.M., Mahmud S., Rahman M.M. et al. Clinical Outcomes of Early Treatment With Doxycycline for 89 High-Risk COVID-19 Patients in Long-Term Care Facilities in New York. Cureus. 2020; 12 (8): e9658. DOI: 10.7759/cureus.9658
  33. Zhou M., Zhang X., Qu J. Coronavirus disease 2019 (COVID-19): a clinical update. Front Med. 2020; 14 (2): 126–35. DOI: 10.1007/s11684-020-0767-8
  34. Havinson V.H., Kuznik B.I., Sturov V.G. i dr. Primenenie preparata Timalin® pri zabolevanijah organov dyhanija. Perspektivy ispol'zovanija pri COVID-19. RMZh. 2020; 9: 24–30 [Khavinson V.Kh., Kuznik B.I., Sturov V.G. et al. Application of the drug Timalin® for respiratory diseases. Prospects for use in COVID-19. RMZh. 2020; 9: 24–30 (in Russ.)].
  35. Kuznik B.I., Havinson V.H. Vlijanie Timalina na sistemy immuniteta, gemostaza i uroven' tsitokinov u patsientov s razlichnymi zabolevanijami. Perspektivy primenenija pri COVID-19. Vrach. 2020; 31 (7): 18–26 [Kuznik B., Khavinson V. The effect of Thymalin on the immune system, hemostasis and cytokines level in patients with various diseases. Prospects for application in case of COVID-19. Vrach. 2020; 31 (7): 18–26 (in Russ.)]. DOI: 10.29296/25877305-2020-07-03
  36. Morozov V.G., Havinson V.H. Vydelenie iz kostnogo mozga, limfotsitov i timusa polipeptidov, regulirujuschih protsessy mezhkletochnoj kooperatsii v sisteme immuniteta. Dokl. AN SSSR. 1981; 261 (1): 235–9 [Morozov V.G., Khavinson V.Kh. Vydelenie iz kostnogo mozga, limfotsitov i timusa polipeptidov, reguliruyushchikh protsessy mezhkletochnoi kooperatsii v sisteme immuniteta. Dokl. AN SSSR. 1981; 261 (1): 235–9 (in Russ.)].
  37. Morozov V.G., Havinson V.H., Malinin V.V. Peptidnye timomimetiki. SPb: Nauka, 2000; 157 s. [Morozov V.G., Khavinson V.Kh., Malinin V.V. Peptidnye timomimetiki. SPb: Nauka, 2000; 157 s. (in Russ.)].
  38. Morozov V.G., Havinson V.H. Vydelenie, ochistka i identifikatsija immunomodulirujuschego polipeptida, soderzhaschegosja v timuse teljat i cheloveka. Biohimija. 1981; 46 (9): 1652–9 [Morozov V.G., Khavinson V.H. Isolation, purification and identification of immunomodulating polypeptide contained in the thymus of calves and humans. Biochemistry. 1981; 46 (9): 1652–9 (in Russ.)].
  39. Havinson V.H., Kuznik B.I., Ryzhak G.A. Peptidnye geroprotektory – epigeneticheskie reguljatory fiziologicheskih funktsij organizma. SPb: Iz-vo RGPU im. I.A Gertsena, 2014; 279 s. [Khavinson V.R., Kuznik B.I., Ryzhak G.A. Peptide geroprotectors-epigenetic regulators of physiological functions of the body. Saint-Petersburg: Publish. Herzen`s RSPU, 2014; 279 p. (in Russ.)].
  40. Kuznik B.I., Lihanov I.D., Tsepelev V.L. i dr. Teoreticheskie i klinicheskie aspekty bioregulirujuschej terapii v hirurgii i travmatologii. Novosibirsk: Nauka, 2008; 312 s. [Kuznik B.I., Likhanov I.D., Tsepelev V.L. et al. Theoretical and clinical aspects of bioregulatory therapy in surgery and traumatology. Novosibirsk: Nauka, 2008; 312 p. (in Russ.)].
  41. Vremennye metodicheskie rekomendatsii. Diagnostika, profilaktika i lechenie novoj koronavirusnoj infektsii (COVID-19). Versija 7 (03.06.2020). M., 2020; 165 s. [Vremennye metodicheskie rekomendacii. Diagnostika, profilaktika i lechenie novoj koronavirusnoj infekcii (COVID-19). Versija 7 (03.06.2020). M., 2020; 165 s. (in Russ.)].
  42. Marfella R., Paolisso P., Sardu C. et al. Negative impact of hyperglycaemia on tocilizumab therapy in Covid-19 patients. Diabetes Metab. 2020; S1262-3636. DOI: 10.1016/j.diabet.2020.05.005