The Journal is included in Russian and International Library and Abstract Databases
Russain Science Index (Russia)
EBSCO
DOI Registration Agency (USA)

Diagnosis of COVID-19. Methods and problems of virus SARS-CoV-2 detection under pandemic conditions

DOI: https://doi.org/10.29296/25877305-2020-08-01
Issue: 
8
Year: 
2020

Professor D. Kudlay(1, 2), MD; Ya. Shirobokov(3); Professor E. Gladunova(3), PharmD; Professor
E. Borodulina(3), MD (1)Sechenov First Moscow State Medical University (2)NRC Institute of Immunology FMBA
of Russia (3)Samara State Medical University

As the COVID-19 pandemic continues and testing for SARS-CoV-2 becomes more readily available, there are new questions and concerns regarding this new virus. When to test? Who should be tested? How often? And what to do with the results obtained? What types of tests are currently available and under what circumstances they might be useful? Understanding the organization of testing at the local, regional, state, and national levels will optimize testing. The paper provides an overview of the available tests and how they can be useful in a rapidly changing and never-before-seen situation.

Keywords: 
infectious diseases
laboratory diagnosis
COVID-19
testing for SARS-CoV-2



References: 
  1. Samorodskaja I.V., Larina V.N., Nazimkin K.E. i dr. Organizatsionnye i klinicheskie problemy diagnostiki COVID-19 na ambulatornom etape. Vrach. 2020; 31 (5): 23–30 [Samorodskaya I., Larina V., Nazimkin K. et al. Organizational and clinical problems of outpatient COVID-19 diagnostics. Vrach. 2020; 31 (5): 23–30 (in Russ.)]. https://doi.org/10.29296/25877305-2020-05-05
  2. Sascella M., Rajnik M., Cuomo A. et al. Features, Evaluation and Treatment Coronavirus (COVID-19). StatPearls: StatPearls Publishing, 2020. URL: https://www.ncbi.nlm.nih.gov/books/NBK554776/
  3. Sullivan P.S., Sailey C., Guest J.L. et al. Detection of SARS-CoV-2 RNA and Antibodies in Diverse Samples: Protocol to Validate the Sufficiency of Provider-Observed, Home-Collected Blood, Saliva, and Oropharyngeal Samples. JMIR Public Health Surveill. 2020; 6 (2): e19054. DOI: 10.2196/19054
  4. Sanduzzi A., Zamparelli S.S. Nasopharyngeal and oropharyngeal swabs, and/or serology for SARS COVID-19: What are we looking for? Int J Environ Res Public Health. 2020; 17 (9): 3289. DOI: 10.3390/ijerph17093289
  5. Testing for COVID-19 | CDC [Electronic resource]. URL: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/testing.html (accessed: 19.07.2020).
  6. Interim Guidelines for Clinical Specimens for COVID-19 | CDC [Electronic resource]. URL: https://www.cdc.gov/coronavirus/2019-nCoV/lab/guidelines-clinical-specimens.html (accessed: 16.06.2020).
  7. Udugama B. et al. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano. 2020; 14 (4): 3822–35. DOI: 10.1021/acsnano.0c02624
  8. Patel R. et al. Report from the American Society for Microbiology COVID-19 International Summit, 23 march 2020: Value of diagnostic testing for SARS–CoV-2/COVID-19. mBio. 2020; 11 (2): e00722-20. DOI: 10.1128/mBio.00722-20
  9. Winichakoon P. et al. Negative nasopharyngeal and oropharyngeal swabs do not rule out COVID-19. J Clin Microbiol. 2020; 58 (5): e00297-20. DOI: 10.1128/JCM.00297-20
  10. CDC. Updated Interim Guidelines for Collecting, Handling, and Testing Clinical Specimens from Persons Under Investigation (PUIs) for Coronavirus Disease 2019 (COVID-19). URL: https://www.cdc.gov/csels/dls/locs/2020/updated_interim_pui_guidelines_for_covid-19.html
  11. Wang X. et al. Comparison of nasopharyngeal and oropharyngeal swabs for SARS-CoV-2 detection in 353 patients received tests with both specimens simultaneously. Int J Infect Dis. 2020; 94: 107–9. DOI: 10.1016/j.ijid.2020.04.023
  12. Lin C. et al. Comparison of throat swabs and sputum specimens for viral nucleic acid detection in 52 cases of novel coronavirus (SARS-Cov-2)-infected pneumonia (COVID-19). Clin Chem Lab Med. 2020; 58 (7): 1089–94. DOI: 10.1515/cclm-2020-0187
  13. Pan Y. et al. Viral load of SARS-CoV-2 in clinical samples. Lancet. Infect Dis. 2020; 20 (4): 411–2. DOI: 10.1016/S1473-3099(20)30113-4
  14. Yang Y. et al. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. medRxiv. 2020. https://doi.org/10.1101/2020.02.11.20021493
  15. Kashir J., Yaqinuddin A. Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Med Hypotheses. 2020; 141: 109786. DOI: 10.1016/j.mehy.2020.109786
  16. Starshinova A.A., Kushnareva E.A., Malkova A.M. i dr. Novaja koronavirusnaja infektsija: osobennosti klinicheskogo techenija, vozmozhnosti diagnostiki, lechenija i profilaktiki infektsii u vzroslyh i detej. Voprosy sovremennoj pediatrii. 2020; 19 (2): 123–31 [Starshinova A.A., Kushnareva E.A., Malkova A.M. et al. New Coronaviral Infection: Features of Clinical Course, Capabilities of Diagnostics, Treatment and Prevention in Adults and Children. Current Pediatrics. 2020; 19 (2): 123–31 (in Russ.)]. https://doi.org/10.15690/vsp.v19i2.2105
  17. Zhong L. et al. Detection of serum IgM and IgG for COVID-19 diagnosis. Sci China Life Sci. 2020: 1–4. DOI: 10.1007/s11427-020-1688-9
  18. Notomi T., Okayama H., Masubuchi H. et al. Loop-Mediated Isothermal Amplification Of DNA. Nucleic Acids Res. 2000; 28 (12): E63. DOI: 10.1093/nar/28.12.e63
  19. Treibel T.A. et al. COVID-19: PCR screening of asymptomatic health-care workers at London hospital. Lancet. 2020; 395 (10237): 1608–10. DOI: 10.1016/S0140-6736(20)31100-4
  20. Corman V.M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020; 25 (3): 2000045. DOI: 10.2807/1560-7917.ES.2020.25.3.2000045
  21. Chu D.K.W. et al. Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clin Chem. 2020; 66 (4): 549–55. DOI: 10.1093/clinchem/hvaa029
  22. Lu R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395 (10224): 565–74. DOI: 10.1016/S0140-6736(20)30251-8
  23. Castro R. et al. COVID-19: a meta-analysis of diagnostic test accuracy of commercial assays registered in Brazil. Brazilian J Infect Dis. 2020; 24 (2): 180. DOI: 10.1016/j.bjid.2020.04.003
  24. Bao L. et al. Lack of Reinfection in Rhesus Macaques Infected with SARS-CoV-2 Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious. bioRxiv. 2020. https://doi.org/10.1101/2020.03.13.990226
  25. Guan W. et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382 (18): 1708–20. DOI: 10.1056/NEJMoa2002032
  26. Zhang W. et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020; 9 (1): 386–9. DOI: 10.1080/22221751.2020.1729071
  27. Xiang J. et al. Evaluation of Enzyme-Linked Immunoassay and Colloidal Gold- Immunochromatographic Assay Kit for Detection of Novel Coronavirus (SARS-Cov-2) Causing an Outbreak of Pneumonia (COVID-19). medRxiv. 2020. https://doi.org/10.1101/2020.02.27.20028787
  28. Yu H-qiong, Sun B-qing, Fang Z-fu et al. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients. Eur Respir J. 2020; In press. https://doi.org/10.1183/13993003.01526-2020
  29. Marimuthu Y., Nagappa B., Sharma N. et al. COVID-19 and tuberculosis: A mathematical model based forecasting in Delhi, India. Indian J Tuberc. 2020; 67 (2): 177–81. DOI: 10.1016/j.ijtb.2020.05.006
  30. Mohsen Rokni, Vida Ghasemi, Zahra Tavakoli. Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: Comparison with SARS and MERS. Rev Med Virol. 2020; 30 (3): e2107. DOI: 10.1002/rmv.2107
  31. Vremennye metodicheskie rekomendatsii po okazaniju protivotuberkuleznoj pomoschi v uslovijah pandemii novoj koronavirusnoj infektsii (COVID-19) ot 28.04.2020 utverzhdennye prezidiumom Rossijskogo obschestva ftiziatrov i prezidiumom Assotsiatsii ftiziatrov. Rezhim dostupa: [Elektronnyj resurs]. [Vremennye metodicheskie rekomendatsii po okazaniyu protivotuberkuleznoi pomoshchi v usloviyakh pandemii novoi koronavirusnoi infektsii (COVID-19) ot 28.04.2020 utverzhdennye prezidiumom Rossiiskogo obshchestva ftiziatrov i prezidiumom Assotsiatsii ftiziatrov. Rezhim dostupa: [Elektronnyi resurs]. (in Russ.)]. URL: http://phtiziatr.iopd.ru/images/Clinic_Recomend/Pril_597_290420.pdf
  32. Slogotskaja L.V., Sinitsyn M.V., Kudlaj D.A. Vozmozhnosti immunologicheskih testov v diagnostike latentnoj tuberkuleznoj infektsii i tuberkuleza. Tuberkulez i bolezni legkih. 2019; 97 (11): 46–58 [Slogotskaya L.V., Sinitsyn M.V., Kudlay D.A. Potentialities of immunological tests in the diagnosis of latent tuberculosis infection and tuberculosis. Tuberculosis and Lung Diseases. 2019; 97 (11): 46–58 (in Russ.)] DOI: 10.21292/2075-1230-2019-97-11-46-58
  33. Foudeh A.M. et al. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab on a Chip. Royal Society of Chemistry. 2012; 12 (18): 3249–66. DOI: 10.1039/c2lc40630f