HAC (Russian)
RSCI (Russian)
Ulrichsweb (Ulrich’s Periodicals Directory)
Scientific Indexing Services


DOI: https://doi.org/10.29296/25877305-2020-03-03
Download full text PDF

A. Vlasina; L. Idrisova, Candidate of Medical Sciences; Professor A. Solopova, MD; T. Blbulyan I.M. Sechenov First Moscow State Medical University (Sechenov University)

Тhe purpose of the review: to demonstrate the relevance of studying the complications of patientswith gynecological cancer after treatment; to highlight the most common disorders of the immune and blood-forming systems after radiation and / or chemotherapy, and the possibility of their correction. Malignant neoplasms of the reproductive system occupy a leading position in the structure of morbidity and mortality of the female population. both in Russia and around the world. The successes of recent decades in the diagnosis and treatment have significantly improved the survival of patients with gynecological cancer. However, modern medicine seeks not only to extend, but also to ensure the maximum quality of the further life of patients. Treatment of patients with gynecological cancer is often associated with a large number of complications. Recently, many studies have been conducted on this issue, but many aspects remain unexplored and not understood by practitioners. This review is devoted to the mechanisms of some hematological and immunological disorders resulting from the aggressive effects of radiotherapy and chemotherapy, as well as to the complex or combined treatment of women with ovarian tumors and cervical cancer. Timely diagnosis of complications after treatment is important for patientswithgynecological cancer. It is necessary to remember the possibility of developing hematological, immune and infectious disorders and to correct them. This will improve survival and quality of life of women.

cancer survivor
uterine cervical neoplasms
ovarian neoplasms
immune system

It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

  1. Bray F., Ferlay J., Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries // CA: A Cancer Journal for Clinicians. – 2018; 68: 394–424. DOI: 10.3322/caac.21492
  2. Kaprin A.D., Starinskij V.V., Petrova G.V. red. Zlokachestvennye novoobrazovanija v Rossii v 2018 godu (zabolevaemost' i smertnost') / M.: MNIOI im. P.A. Gertsena – filial FGBU «NMITs radiologii» Minzdrava Rossii, 2019; 236 s. [Kaprin A.D., Starinskij V.V., Petrova G.V. (red.). Malignant neoplasms in Russia in 2018 (morbidity and mortality) / M.: P.A. Hertsen Moscow Oncology Research Center – branch of FSBI NMRRC of the Ministry of Health of Russia Publ., 2019; 236 s. (in Russ.)].
  3. Idrisova L., Solopova A., Savchenko A. et al. Cervical cancer rehabilitation: a prospective study // Georgian Med. News. – 2018; 280–281: 17–23.
  4. Lutgendorf S., Mullen-Houser E., Russell D. et al. Preservation of immune function in cervical cancer patients during chemoradiation using a novel integrative approach // Brain Behav. Immun. – 2010; 24 (8): 1231–40. DOI: 10.1016/j.bbi.2010.06.014
  5. Huang K., Luo A., Li X. et al. Chemotherapy-induced neutropenia during adjuvant treatment for cervical cancer patients: development and validation of a prediction model // Int. J. Clin. Exp. Med. – 2015; 8 (7): 10835–44.
  6. Qu C., Sun G., Yang S. et al. Toxicities of different first-line chemotherapy regimens in the treatment of advanced ovarian cancer: A network meta-analysis // Medicine (Baltimore). – 2017; 96 (2): e5797.
  7. Andrews S., Von gruenigen V. Management of the late effects of treatments for gynecological cancer // Curr. Opin. Oncol. – 2013; 25 (5): 566–70. DOI: 10.1097/CCO.0b013e328363e11a
  8. Flowers C., Seidenfeld J., Bow E. et al. Antimicrobial prophylaxis and outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology clinical practice guideline // J. Clin. Oncol. – 2013; 31 (6): 794–810. DOI: 10.1200/JCO.2012.45.8661
  9. Kuderer N., Dale D., Crawford J. et al. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients // Cancer. – 2006; 106 (10): 2258–66. DOI: 10.1002/cncr.21847
  10. Lucas A., Olin J., Coleman M. Management and Preventive Measures for Febrile Neutropenia // P T. – 2018; 43 (4): 228–32.
  11. Wong J., Evans S. Bacterial Pneumonia in Patients with Cancer: Novel Risk Factors and Management // Clin. Chest Med. – 2017; 38 (2): 263–77. DOI: 10.1016/j.ccm.2016.12.005
  12. Harano K., Hirakawa A., Kato T. et al. Use of colony-stimulating factor in patients with ovarian cancer receiving paclitaxel and carboplatin in Japan // J. Gynecol. Oncol. – 2014; 25 (2): 124–9.
  13. Gadducci A., Gargini A., Palla E. et al. Neutropenic enterocolitis in an advanced epithelial ovarian cancer patient treated with paclitaxel/platinum-based chemotherapy: a case report and review of the literature // Anticancer Res. – 2005; 25 (3c): 2509–13.
  14. Glicksman R., Chaudary N., Pintilie M. et al. The predictive value of nadir neutrophil count during treatment of cervical cancer: Interactions with tumor hypoxia and interstitial fluid pressure (IFP) // Clin. Transl. Radiat. Oncol. – 2017; 6: 15–20. DOI: 10.1016/j.ctro.2017.08.002
  15. Tewari K., Java J., Gatcliffe T. et al. Chemotherapy-induced neutropenia as a biomarker of survival in advanced ovarian carcinoma: an exploratory study of the gynecologic oncology group // Gynecol. Oncol. – 2014; 133 (3): 439–45. DOI: 10.1016/j.ygyno.2014.03.013
  16. Lutgendorf S., Mullen-Houser E., Russell D. et al. Preservation of immune function in cervical cancer patients during chemoradiation using a novel integrative approach // Brain Behav. Immun. – 2010; 24 (8): 1231–40. DOI: 10.1016/j.bbi.2010.06.014
  17. Yang M., Liu P., Wang K. et al. Chemotherapy induces tumor immune evasion by upregulation of programmed cell death ligand 1 expression in bone marrow stromal cells // Mol. Oncol. – 2017; 11 (4): 358–72. DOI: 10.1002/1878-0261.12032
  18. Samanta D., Park Y., Ni X. et al. Chemotherapy induces enrichment of CD47/CD73/PDL1 immune evasive triple-negative breast cancer cells // Proc. Natl. Acad. Sci USA. – 2018; 115 (6): E1239–E1248. DOI: 10.1073/pnas.1718197115
  19. Lumniczky K., Candéias S., Gaipl U. et al. Editorial: Radiation and the Immune System: Current Knowledge and Future Perspectives // Front Immunol. – 2018; 8: 1933. DOI: 10.3389/fimmu.2017.01933
  20. van Meir H., Nout R., Welters M. et al. Impact of (chemo)radiotherapy on immune cell composition and function in cervical cancer patients // Oncoimmunology. – 2016; 6 (2): e1267095. DOI: 10.1080/2162402X.2016.1267095
  21. Derer A., Spiljar M., Bäumler M. et al. Chemoradiation Increases PD-L1 Expression in Certain Melanoma and Glioblastoma Cells // Front Immunol. – 2016; 7: 610.
  22. Walle T, Martinez Monge R, Cerwenka A, Ajona D, Melero I, Lecanda F. Radiation effects on antitumor immune responses: current perspectives and challenges. TherAdv Med Oncol. 2018 Jan 18;10:1758834017742575. doi: 10.1177/1758834017742575. DOI: 10.3389/fimmu.2016.00610
  23. Rodriguez-Ruiz M., Rodriguez I., Garasa S. et al. Abscopal Effects of Radiotherapy Are Enhanced by Combined ImmunostimulatorymAbs and Are Dependent on CD8 T Cells and Crosspriming // Cancer Res. – 2016; 76 (20): 5994–6005. DOI: 10.1158/0008-5472.CAN-16-0549
  24. Hiniker S., Reddy S., Maecker H. et al. A Prospective Clinical Trial Combining Radiation Therapy With Systemic Immunotherapy in Metastatic Melanoma // Int. J. Radiat. Oncol. Biol. Phys. – 2016; 96 (3): 578–88. DOI: 10.1016/j.ijrobp.2016.07.005
  25. Lee Y., Auh S., Wang Y. et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment // Blood. – 2009; 114 (3): 589–95. DOI: 10.1182/blood-2009-02-206870
  26. Chajon E., Castelli J., Marsiglia H. et al. The synergistic effect of radiotherapy and immunotherapy: A promising but not simple partnership // Crit. Rev. Oncol. Hematol. – 2017; 111: 124–32. DOI: 10.1016/j.critrevonc.2017.01.017
  27. Klug F., Prakash H., Huber P. et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy // Cancer Cell. – 2013; 24 (5): 589–602. DOI: 10.1016/j.ccr.2013.09.014
  28. Rodriguez-Ruiz M., Garasa S., Rodriguez I. et al. Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium // Int. J. Radiat. Oncol. Biol. Phys. – 2017; 97 (2): 389–400. DOI: 10.1016/j.ijrobp.2016.10.043
  29. Lamichhane P., Amin N., Agarwal M. et al. Checkpoint Inhibition: Will Combination with Radiotherapy and Nanoparticle-Mediated Delivery Improve Efficacy? // Medicines (Basel). – 2018; 5 (4): e114. DOI: 10.3390/medicines5040114