HAC (Russian)
RSCI (Russian)
EBSCO
DOI (USA)
Ulrichsweb (Ulrich’s Periodicals Directory)
Scientific Indexing Services

THE EFFECT OF THE INTESTINAL MICROFLORA ON THE METABOLISM OF ESTROGENS AND THE DEVELOPMENT OF DYSHORMONAL GYNECOLOGICAL DISEASES

DOI: https://doi.org/10.29296/25877305-2019-01-02
Issue: 
1
Year: 
2019

A. Sorokina, MD Clinic «IQ Health», Moscow

One of the leading causes of dyshormonal gynecological diseases (DGDs) is the body’s accumulation of toxins and heavy metals that have a hormone-like effect and lead to hyperestrogenism due to the formation of harmful estrogen metabolites. The intestinal microflora, namely its imbalance with the predominance of fungal and other opportunistic microflora, are directly involved in these processes. In this connection, correction of the microflora in the intestine, a reduction in its wall hyperpermeability, and the body’s general detoxification should be considered as a pathogenetically justified treatment for DGDs.

Keywords: 
gastroenterology
obstetrics and gynecology
intestinal microflora
estrogen metabolites
gynecological diseases



References: 
  1. Muti P., Bradlow H. et al. Estrogen metabolism and risk of breast cancer: a prospective study of the 16alphahydroxyestrone ratio in premenopausal and postmenopausal women // Epidemiology. – 2000; 11 (6): 635–40.
  2. Rogan E, Badawi A. et al. Relative imbalances in estrogen metabolism and conjugation in breast tissue of women with carcinoma: potential biomarkers of susceptibility to cancer // Carcinogenesis (England). – 2003; 24 (4): 697–702.
  3. Liehr J., Ricci M. 4-Hydroxylation of estrogens as marker of human mammary tumors // Proc. Natl. Acad. Sci. USA. – 1996; 93 (8): 3294–6.
  4. Utsunomiya H., Ito K. et al. Steroid sulfatase and estrogen sulfotransferase in human endometrial carcinoma // Clin. Cancer Res. – 2004; 10 (17): 5850–6.
  5. Guillemette C., Belanger A., Lepine J. Metabolic inactivation of estrogens in breast tissue by UDP- glucuronosyltransferase enzymes: an overview // Breast Cancer Res. – 2004; 6 (6): 246–54.
  6. Bradlow H., Davis D. et al. Effects of pesticides on the ratio of 16/2-hydroxyestrone: a biologic marker of breast cancer risk // Environ Health Perspect. – 1995; 103 (suppl. 7): 147–50.
  7. Toba T., Shidoji Y. et al. Growth suppression and induction of heatshock protein-70 by 9-cis beta-carotene in cervical dysplasiaderived cells // Life Sci. (England). – 1997; 61 (8): 839–45.
  8. Nagata C., Shimizu H. et al. Serum carotenoids and vitamins and risk of cervical dysplasia from a case-control study in Japan // Br. J. Cancer (Scotland). – 1999; 81 (7): 1234–7.
  9. Lou H., Wu R., Fu Y. Relation between selenium and cancer of uterine cervix // Zhonghua Zhong Liu Za. – 1995; 17 (2): 112–4.
  10. Kaaks R. Nutrition, hormones, and breast cancer: Is insulin the missing link? // Cancer Causes Control. – 1996; 7: 605–25.
  11. Musey P., Collins D., Bradlow H. et al. Effect of diet on oxidation of 17 β-estradiol in vivo // J. Clin. Endocrinol. Metab. – 1987; 65 (4): 792–5.
  12. Bradlow H., Davis D., Lin G. et al. Effects of pesticides on the ratio of 16α/2- hydroxyestrone: a biological marker of breast cancer risk // Environ Health Perspect. – 1995; 103 (Suppl. 7): 147–50.
  13. Ioannides C. Effect of diet and nutrition on the expression of cytochromes P450 // Xenobiotica. – 1999; 29 (2): 109–54.
  14. Shultz T., Howie B. In vitro binding of steroid hormone by natural and purified fibers // Nutr. Cancer. – 1986; 8 (2): 141–7.
  15. Adlercreutz H. Western diet and Western diseases: some hormonal and biochemical mechanisms and associations // Scand. J. Clin. Lab. Invest. – 1990; 50 (S201): 3–23.
  16. Adlercreutz H., Hockerstedt K., Bannwart C. et al. Effect of dietary components, including lignans and phytoestrogens, on enterohepatic circulation and liver metabolites of estrogens and in sex hormones bindingglobulin (SHBP) // J. Steroid Biochem. – 1987; 27 (4–6): 1135–44.
  17. Turnbaugh P., Backhed F. et al. Diet-indused obesity is linked to marked but reversible alterations in the mouse distal gut microbiome // Cell Host Microbe. – 2008; 3: 213–23.
  18. Tremellen K., Syedi N. et al. Metabolic endotoxaemia – a potential novel link between ovarian inflammation and impaired progesterone production // Gynecol. Endocrinol. – 2015; 31 (4): 309–12. DOI: 10.3109/09513590.2014.994602.
  19. Hildebrandt M., Hoffmann C. et al. Hight-fat diet determines the composition of the murine gut microbiome independently of obesity // Gastroenterology. – 2009; 137: 1716–24.
  20. Tomer Y. et al. Infection, Thyroid disease and autoimmunity // Endocr. Rev. – 1993; 14 (1): 107–20.
  21. Petru G., Stünzner D., Lind P. et al. Antibodies to Yersinia enterocolitica in immunogenic thyroid disease // Acta Med. Austriaca. – 1987; 14 (1): 11–4.
  22. Kadooka Y., Sato M. et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial // Eur. J. Clin. Nutr. – 2010; 64: 636–43.
  23. Wang C., Makela T. et al. Lignans and flavonoids inhibit aromatase enzyme in human preadipocytes // J. Steroid Biochem. Molec. Biol. – 1994; 50: 205–12.
  24. Xu X., Duncan A. et al. Effect of soy isoflavones on estrogen and phytoestrogen metabolism in premenopausal women // Cancer Epidemiol. Biomarkers Prev. – 1998; 7 (12): 1101–8.
  25. Xu X., Duncan A. et al. Soy consumption alters endogenous estrogen metabolism in postmenopausal women // Cancer Epidemiol. Biomarkers Prev. – 2000; 9 (8): 781–6.
  26. Bolton J., Pisha E. et al. Role of quinoids in estrogen carcinogenesis // Chem. Res. Toxicol. – 1998; 11: 1113–27.
  27. Michnovicz J., Adlercreutz H. Changes in levels of urinary estrogen metabolites after oral indol-3-carbinol treatment in humans // J. Natl. Cancer Inst. – 1997; 89 (10): 718–23.
  28. Tiwari R., Guo L., Bradlow H. et al. Selective responsiveness of human breast cancer cells to indol-3-carbinol, a chemopreventive agent // J. Natl. Cancer Inst. – 1994; 86 (2): 126–31.
  29. Riby J., Feng C. et al. The major cyclic trimeric product of indole-3-carbinol is a strong agonist of the estrogen receptor signaling pathway // Biochemistry (United States). – 2000; 39 (5): 910–8.
  30. Bradlow H., Sepkovic D. et al. Multifunctional aspects of the action of indole-3-carbinol as antitumor agent // Ann. NY Acad. Sci. – 1999; 889: 204–13.
  31. Meng Q., Qi M. et al. Suppression of breast cancer invasion and migration by indole-3-carbinol: associated with up-regulation of BRCA1 and E-cadherin/catenin complexes // J. Mol. Med. – 2000; 78 (3): 155–65.
  32. Riby J., Chang G. et al. Ligand-independent activation of estrogen receptor function by 3-diindolylmethane in human breast cancer cells // Biochem. Pharmacol. – 2000; 60 (2): 167–77.
  33. Butterworth M., Lau S., Monks T. 17 β-esiradiol metabolism by hamster hepatic microsomes.Implications for the catechol-O-methyl transferase-mediated detoxication of catechol estrogens // Drug Metab. Dispos. – 1996; 24 (5): 588–94.
  34. Tully D., Allgood V., Cidlowski J. Modulation of steroid receptor-mediated gene expression by vitamin B6 // FASEB J. – 1994; 8 (3): 343–9.
  35. Bender D. Novel function of vitamin B6 // Proceedings Nutr. Soc. – 1994; 53: 625–30.
  36. Yoon K., Pellaroni L. et al. Differantial activation of wild-type and variant forms of estrogen receptor a by synthetic and natural estrogenic compounds using a promoter containing three estrogen- responsive elements // J. Steroid Biochem. Mol. Biol. – 2001; 78: 25–32.
  37. DeFlora S., Benniceli C., Camoiriano A. et al. In vivo effects of N-acetylcysteine on glutatione metabolism and on biotransformation of carcinogen and/or mutagenic compounds // Carcinogenesis. – 1985; 6: 1735–45.
  38. Wellington K., Jarvis B. Silymarin: a review of its clinical properties in the management of hepatic disordes // BioDrugs. – 2001; 15 (7): 465–89.
  39. Verma S., Goldin B., Lin P. The inhibition of the estrogenic effects of pesticides and environmental chemicals by curcumin and isoflavonoids // Environ Health Perspect. – 1998; 106 (12): 807–12.
  40. Goud V., Polasa K., Krishnaswamy K. Effect of turmeric on xenobiotic metabolizing enzymes // Plant Foods Hum. Nutr. – 1993; 44 (1): 87–92.