Роль кишечной микробиоты в старении и поддержании активного долголетия. Часть 2

DOI: https://doi.org/10.29296/25877305-2024-02-03
Номер журнала: 
2
Год издания: 
2024

А.К. Ратникова(1, 2), кандидат медицинских наук,
Я.И. Ашихмин(1, 3, 4), кандидат медицинских наук,
В.А. Ратников(2, доктор медицинских наук, профессор,
М.О. Грудина(1),
О.Н. Дикур(5, 6), кандидат медицинских наук
1-Health Care Resort «Первая Линия», Санкт-Петербург
2-Северо-Западный окружной научно-клинический центр
им. Л.Г. Соколова Федерального медико-биологического
агентства России, Санкт-Петербург
3-Центр экспертизы и контроля качества медицинской помощи Минздрава России, Москва
4-Клиника «ДокМед», Москва
5-Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
6-Клиника «Рассвет», Москва
E-mail: ya.ashikhmin@gmail.com

Рассматривается роль кишечной микробиоты в старении и поддержании активного долголетия. Во 2-й части рассмотрены вопросы повреждения ДНК метаболитами различных бактерий, что повышает риск онкологических заболеваний. Подробно изложено взаимодействие микробиоты и иммунной системы, связь дисбиоза и старения иммунной системы с указанием конкретных молекулярных механизмов. Особое внимание уделено лимфоцитам субпопуляции Th17. Показаны изменения микробиома, которые наблюдаются у лиц с сердечно-сосудистыми заболеваниями (артериальной гипертензией, ишемической болезнью сердца, хронической сердечной недостаточностью). Раскрыта роль триметиламиноксида и новых механизмов поражения сердечно-сосудистой системы, связанных с миграцией иммунных клеток из пейеровых бляшек в атеросклеротические бляшки. Даны представления о взаимосвязи микробиома и когнитивной функции. Рассмотрены изменения микробиома на фоне повышения физической активности. В заключительной части статьи представлены интервенции в отношении микробиома, нацеленные на увеличение продолжительности и качества жизни. Они включают диету, применение пребиотиков, пробиотиков, синбиотиков, а также лекарственных препаратов, влияющих на микробиоту.

Ключевые слова: 
микробиом
микробиота
старение
активное долголетие.

Для цитирования
Ратникова А.К., Ашихмин Я.И., Ратников В.А. и др. Роль кишечной микробиоты в старении и поддержании активного долголетия. Часть 2 . Врач, 2024; (2): 15-20 https://doi.org/10.29296/25877305-2024-02-03


Список литературы: 
  1. gunrinola G.A., Oyewale J.O., Oshamika O. et al. The Human Microbiome and Its Impacts on Health. Int J Microbiol. 2020; 2020: 8045646. DOI: 10.1155/2020/804564
  2. Baliou S., Adamaki M, Spandidos D.А. et al. The microbiome, its molecular mechanisms and its potential as a therapeutic strategy against colorectal carcinogenesis (Review). World Acad Sci J. 2019; 1: 3–19. DOI: 10.3892/wasj.2018.6
  3. Lv G., Cheng N., Wang H. The Gut Microbiota, Tumorigenesis, and Liver Diseases. Engineering. 2017; 3 (1): 110–4. DOI: 10.1016/j.eng.2017.01.017
  4. Zapata H., Quagliarello V. The microbiota and microbiome in aging: potential implications in health and age-related diseases. J Am Geriatr Soc. 2015; 63 (4): 776–81. DOI: 10.1111/jgs.13310
  5. Jovel J., Dieleman L.А., Kao D. et al. The Human Gut Microbiome in Health and Disease. In book: Metagenomics: Perspectives, Methods, and Applications. Ed. Nagarajan M. 2018; рр. 197–213. DOI: 10.1016/B978-0-08-102268-9.00010-0
  6. Atarashi K., Tanoue T., Oshima K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013; 500 (7461): 232–6. DOI: 10.1038/nature12331
  7. Duggal N.A., Upton J., Phillips А.С. et al. An age-related numerical and functional deficit in CD19+ CD24hi CD38hi B cells is associated with an increase in systemic autoimmunity. Aging Cell. 2013; 12 (5): 873–81. DOI: 10.1111/acel.12114
  8. Yan Q., Gu Y., Li X. et al. Alterations of the Gut Microbiome in Hypertension. Front Cell Infect Microbiol. 2017; 7: 381. DOI: 10.3389/fcimb.2017.00381
  9. Emoto T., Yamashita T., Sasaki N. et al. Analysis of Gut Microbiota in Coronary Artery Disease Patients: a Possible Link between Gut Microbiota and Coronary Artery Disease. J Atheroscler Thromb. 2016; 23 (8): 908–21. DOI: 10.5551/jat.32672
  10. Pasini E., Aquilani R., Testa C. et al. Pathogenic Gut Flora in Patients with Chronic Heart Failure. JACC Heart Fail. 2016; 4 (3): 220–7. DOI: 10.1016/j.jchf.2015.10.009
  11. Yarur A.J., Deshpande A.R., Pechman D.M. et al. Inflammatory bowel disease is associated with an increased incidence of cardiovascular events. Am J Gastroenterol. 2011; 106 (4): 741–7. DOI: 10.1038/ajg.2011.63
  12. Тang W.H.W., Wang Z, Levison B.S. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013; 368 (17): 1575–84. DOI: 10.1056/NEJMoa1109400
  13. Wiedermann C.J., Kiechl S., Dunzendorfer S. et al. Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck Study. J Am Coll Cardiol. 1999; 34 (7): 1975–81. DOI: 10.1016/s0735-1097(99)00448-9
  14. Rath S., Heidrich B., Pieper D.H. et al. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome. 2017; 5 (1): 54. DOI: 10.1186/s40168-017-0271-9
  15. Li X.S., Obeid S., Klingenberg R. et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 2017; 38 (11): 814–24. DOI: 10.1093/eurheartj/ehw582
  16. Koeth R.A., Wang Z., Levison B.S. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013; 19 (5): 576–85. DOI: 10.1038/nm.3145
  17. Anderson J.R., Carroll I., Azcarate-Peril M.A. et al. A preliminary examination of gut microbiota, sleep, and cognitive flexibility in healthy older adults. Sleep Med. 2017; 38: 104–7. DOI: 10.1016/j.sleep.2017.07.018
  18. Verdi S., Jackson M.A., Beaumont M. et al. An Investigation Into Physical Frailty as a Link Between the Gut Microbiome and Cognitive Health. Front Aging Neurosci. 2018; 10: 398. DOI: 10.3389/fnagi.2018.00398
  19. Cattaneo A., Cattane N., Galluzzi S. et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging. 2017; 49: 60–8. DOI: 10.1016/j.neurobiolaging.2016.08.019
  20. Mailing L.J., Allen J.M., Buford T.W. et al. Exercise and the Gut Microbiome: A Review of the Evidence, Potential Mechanisms, and Implications for Human Health. Exerc Sport Sci Rev. 2019; 47 (2): 75–85. DOI: 10.1249/JES.0000000000000183
  21. Durk R.P., Castillo E., Márquez-Magaña L. et al. Gut Microbiota Composition Is Related to Cardiorespiratory Fitness in Healthy Young Adults. Int J Sport Nutr Exerc Metab. 2019; 29 (3): 249–53. DOI: 10.1123/ijsnem.2018-0024
  22. Estaki M., Pither J., Baumeister P. et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016; 4 (1): 42. DOI: 10.1186/s40168-016-0189-7
  23. Hughes R.L. A Review of the Role of the Gut Microbiome in Personalized Sports Nutrition. Front Nutr. 2020; 6: 191–218. DOI: 10.3389/fnut.2019.00191
  24. Song S.J., Amir A., Metcalf J.L. et al. Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies. mSystems. 2016; 1 (3): e00021-16. DOI: 10.1128/mSystems.00021-16
  25. Bressa C., Bailén-Andrino M., Pérez-Santiago J. et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS One. 2017; 12 (2): e0171352. DOI: 10.1371/journal.pone.0171352
  26. Sofi F., Cesari F., Abbate R. et al. Adherence to Mediterranean diet and health status: meta-analysis. BMJ. 2008; 337: a1344. DOI: 10.1136/bmj.a1344
  27. Meslier V., Laiola M., Roager Н.М. et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut. 2020; 69 (7): 1258–68. DOI: 10.1136/gutjnl-2019-320438
  28. Ray K. Gut microbiota: Filling up on fibre for a healthy gut. Nat Rev Gastroenterol Hepatol. 2018; 15 (2): 67. DOI: 10.1038/nrgastro.2018.2
  29. Desai M.S., Seekatz A.M., Koropatkin N.M. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016; 167 (5): 1339–53.e21. DOI: 10.1016/j.cell.2016.10.043
  30. Menni C., Zierer J., Pallister T. et al. Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Sci Rep. 2017; 7 (1): 11079. DOI: 10.1038/s41598-017-10382-2
  31. Ott B., Skurk T., Hastreiter L. et al. Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Sci Rep. 2017; 7 (1): 11955. DOI: 10.1038/s41598-017-12109-9
  32. Kellow N.J., Coughlan M.T., Reid C.M. Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr. 2014; 111 (7): 1147–61. DOI: 10.1017/S0007114513003607
  33. An R., Wilms E., Smolinska А. et al. Sugar Beet Pectin Supplementation Did Not Alter Profiles of Fecal Microbiota and Exhaled Breath in Healthy Young Adults and Healthy Elderly. Nutrients. 2019; 11 (9): 2193. DOI: 10.3390/nu11092193
  34. La Fata G., Weber P., Mohajeri M.Н. Probiotics and the Gut Immune System: Indirect Regulation. Probiot Antimicrob Proteins. 2018; 10 (1): 11–21. DOI: 10.1007/s12602-017-9322-6
  35. Gomma E.Z. Human gut microbiota/microbiome in health and diseases: a review. Antonie van Leeuwenhoek. 2020; 113 (12): 2019–40. DOI: 10.1007/s10482-020-01474-7
  36. Valentini L., Pinto A., Bourdel-Marchasson I. et al. Impact of personalized diet and probiotic supplementation on Inflammation, nutritional parameters and intestinal microbiota–The “RISTOMED project”: Randomized controlled trial in healthy older people. Clin Nutr. 2015; 34 (4): 593–602. DOI: 10.1016/j.clnu.2014.09.023
  37. Spaiser S.J., Culpepper T., Nieves Jr. C. et al. Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and ifidobacterium longum MM-2 Ingestion Induces a Less Inflammatory Cytokine Profile and a Potentially Beneficial Shift in Gut Microbiota in Older Adults: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. J Am Coll Nutr. 2015; 34 (6): 459–69. DOI: 10.1080/07315724.2014.983249
  38. Ipci K., Altintoprak N., Muluk N.В. et al. The possible mechanisms of the human microbiome in allergic diseases. Eur Arch Otorhinolaryngol. 2017; 274 (2): 617–26. DOI: 10.1007/s00405-016-4058-6
  39. Tillisch K., Labus J., Kilpatrick L. et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013; 144 (7): 1394–401. DOI: 10.1053/j.gastro.2013.02.043
  40. Messaoudi M., Lalonde R., Violle N. et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2011; 105 (5): 755–64. DOI: 10.1017/S0007114510004319
  41. Roshanravan N., Mahdavi R., Alizadeh E. et al. Effect of Butyrate and Inulin Supplementation on Glycemic Status, Lipid Profile and Glucagon-Like Peptide 1 Level in Patients with Type 2 Diabetes: A Randomized Double-Blind, Placebo-Controlled Trial. Horm Metab Res. 2017; 49 (11): 886–91. DOI: 10.1055/s-0043-119089
  42. Ahmadi S., Razazan A., Nagpal R. et al. Metformin reduces aging-related leaky gut and improves cognitive function by beneficially modulating gut microbiome/goblet cell/mucin axis. J Gerontol A Biol Sci Med Sci. 2020; 75 (7), e9-e21. DOI: 10.1093/gerona/glaa056
  43. Nie P., Li Z., Wang Y. et al. Gut microbiome interventions in human health and diseases. Med Res Rev. 2019; 39 (6): 2286–313. DOI: 10.1002/med.21584
  44. Menees S.B., Maneerattannaporn M., Kim H.M. et al. The efficacy and safety of rifaximin for the irritable bowel syndrome: a systematic review and meta-analysis. Am J Gastroenterol. 2012; 107 (1): 28–35. DOI: 10.1038/ajg.2011.355