Генетические аспекты анкилозирующего спондилита

DOI: https://doi.org/10.29296/25877305-2019-12-19
Скачать статью в PDF
Номер журнала: 
12
Год издания: 
2019

В. Мордовский(1, 2), Е. Капустина(1, 2), кандидат медицинских наук, А. Чернова(1, 2), доктор медицинских наук, С. Никулина(1), доктор медицинских наук, Н. Аксютина(1), доктор медицинских наук, Т. Потупчик(1), кандидат медицинских наук 1-Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого 2-Российско-итальянская лаборатория медицинской генетики MAGI Russia, Красноярск E-mail: v.mordovskii@krasgmu.ru

Представлен обзор по генетическим аспектам анкилозирующего спондилита (АС) – хронического воспалительного заболевания аутоиммуного происхождения с преимущественным поражением аксиального скелета. С начала эпохи полногеномного поиска ассоциаций (GWAS) выявлено более 150 локусов, ассоциированных с АС, но это позволяет объяснить не более 30% случаев наследования. В обзоре предпринята попытка понять роль представленных генов в развитии АС. Продолжение исследований в указанном направлении позволит создать предпосылки к появлению новых целей для таргетной терапии.

Ключевые слова: 
анкилозирующий спондилит
HLA-B27
фактор некроза опуходи
ERAP1
одиночный нуклеотидный полиморфизм
генетика

Для цитирования
Мордовский В., Капустина Е., Чернова А., Никулина С., Аксютина Н., Потупчик Т. Генетические аспекты анкилозирующего спондилита . Врач, 2019; (12): 71-75 https://doi.org/10.29296/25877305-2019-12-19


It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

Список литературы: 
  1. Li Z., Haynes K., Pennisi D. et al. Epigenetic and gene expression analysis of ankylosing spondylitis-associated loci implicate immune cells and the gut in the disease pathogenesis // Genes and Immunity. – 2017; 18 (3): 135–43. DOI: 10.1038/gene.2017.11.
  2. Ranganathan V., Gracey E., Brown M. et al. Pathogenesis of ankylosing spondylitis – recent advances and future directions // Nat. Rev. Rheumatol. – 2017; 13 (6): 359–67. DOI: 10.1038/nrrheum.2017.56.
  3. Brown M., Kenna T., Wordsworth B. Genetics of ankylosing spondylitis - insights into pathogenesis // Nat. Rev. Rheumatol. – 2015; 12 (2): 81–91. DOI: 10.1038/nrrheum.2015.133.
  4. Ranganathan V., Gracey E., Brown M. et al. Pathogenesis of ankylosing spondylitis - recent advances and future directions // Nat. Rev. Rheumatol. – 2017; 13 (6): 359–67. DOI: 10.1038/nrrheum.2017.56.
  5. Hanson A., Brown M. Genetics and the Causes of Ankylosing Spondylitis. // Rheum. Dis. Clin. North Am. – 2017; 43 (3): 401–14. DOI: 10.1016/j.rdc.2017.04.006.
  6. Dashti N., Mahmoudi M., Aslani S. et al. HLA-B*27 subtypes and their implications in the pathogenesis of ankylosing spondylitis // Gene. – 2018; 670: 15–21. DOI: 10.1016/j.gene.2018.05.092.
  7. Colbert R., Tran T., Layh-Schmitt G. HLA-B27 misfolding and ankylosing spondylitis // Mol. Immunol. – 2014; 57 (1): 44–51. DOI: 10.1016/j.molimm.2013.07.013.
  8. Dashti N., Mahmoudi M., Aslani S. et al. HLA-B*27 subtypes and their implications in the pathogenesis of ankylosing spondylitis // Gene. – 2018; 670: 15–21. DOI: 10.1016/j.gene.2018.05.092.
  9. Schittenhelm R., Sian T., Wilmann P. et al. Revisiting the Arthritogenic Peptide Theory: Quantitative Not Qualitative Changes in the Peptide Repertoire of HLA-B27 Allotypes // Arthritis & Rheumatology. – 2015; 67 (3): 702–13. DOI: 10.1002/art.38963.
  10. Lin H., Gong Y.-Z. Association of HLA-B27 with ankylosing spondylitis and clinical features of the HLA-B27-associated ankylosing spondylitis: a meta-analysis // Rheumatol. Int. – 2017; 37 (8): 1267–80. DOI: 10.1007/s00296-017-3741-2.
  11. Cortes A., Pulit S., Leo P. et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1 // Nature Communications. – 2015; 6 (1): 3–11. DOI: 10.1038/ncomms8146.
  12. Li H., Li Q., Ji C. et al. Ankylosing Spondylitis Patients with HLA-B*2704 have More Uveitis than Patients with HLA-B*2705 in a North Chinese Population // Ocular Immunol. Inflamm. – 2016; 26 (1): 65–9. DOI: 10.1080/09273948.2016.1188967.
  13. Chen L., Shi H., Yuan J. et al. Position 97 of HLA-B, a residue implicated in pathogenesis of ankylosing spondylitis, plays a key role in cell surface free heavy chain expression // Ann. Rheum. Dis. – 2016; 76 (3): 593–601. DOI: 10.1136/annrheumdis-2016-209512.
  14. Li Z., Brown M. Progress of genome-wide association studies of ankylosing spondylitis. // Clin. Transl. Immunol. – 2017; 6 (12): e163. DOI: 10.1038/cti.2017.49.
  15. Kenna T., Robinson P., Haroon N. Endoplasmic reticulum aminopeptidases in the pathogenesis of ankylosing spondylitis // Rheumatology. – 2015; 54 (9): 1549–56. DOI: 10.1093/rheumatology/kev218.
  16. Meng Q., Zhang X., Liu X. et al. Association of PTPN22 polymorphsims and ankylosing spondylitis susceptibility // Int. J. Clin. Experim. Pathol. – 2015; 8 (1): 933–7.
  17. Lee Y., Song G. Associations between ERAP1 polymorphisms and susceptibility to ankylosing spondylitis: a meta-analysis // Clin. Rheumatol. – 2016; 35 (8): 2009–15. DOI: 10.1007/s10067-016-3287-9.
  18. Martin-Esteban A., Sanz-Bravo A., Guasp P. et al. Separate effects of the ankylosing spondylitis associated ERAP1 and ERAP2 aminopeptidases determine the influence of their combined phenotype on the HLA-B*27 peptidome // J. Autoimmun. – 2017; 79 (4): 28–38. DOI: 10.1016/j.jaut.2016.12.008.
  19. Andrés A., Dennis M., Kretzschmar W. et al. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation // PLoS Genet. – 2010; 6 (10): e1001157. DOI: 10.1371/journal.pgen.1001157.
  20. Robinson P., Costello M., Leo P. et al. ERAP2 is associated with ankylosing spondylitis inHLA-B27-positive and HLA-B27-negative patients // Ann. Rheum. Dis. – 2015; 74 (8): 1627–9. DOI: 10.1136/annrheumdis-2015-207416.
  21. Raychaudhuri S., Raychaudhuri S. IL-23/IL-17 axis in spondyloarthritis-bench to bedside // Clin. Rheumatol. – 2016; 35 (6): 1437–41. DOI: 10.1007/s10067-016-3263-4.
  22. Cortes A., Hadler J., Pointon J. et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci // Nat. Gen. – 2013; 45: 730–8.
  23. Ghoreschi K., Laurence A., Yang X. et al. Generation of pathogenic T(H)17 cells in the absence of TGF-beta signaling // Nature. – 2010; 467: 967–71. DOI: 10.1038/nature09447.
  24. Lee Y., Song G. Associations between interleukin-23R polymorphisms and ankylosing spondylitis susceptibility: an updated meta-analysis // Zeitschrift für Rheumatologie. – 2018; 78 (3): 272–80. DOI: 10.1007/s00393-018-0472-z.
  25. Vidal-Castiñeira J., López-Vázquez A., Diaz-Peña R. et al. A Single Nucleotide Polymorphism in the Il17ra Promoter Is Associated with Functional Severity of Ankylosing Spondylitis // Public Library of Science. – 2016; 11 (7): e0158905. DOI: 10.1371/journal.pone.0158905.
  26. Zhang L., Fan D., Liu L. et al. Association Study of IL-12B Polymorphisms Susceptibility with Ankylosing Spondylitis in Mainland Han Population // Public Library of Science. – 2015; 10 (6): e0130982. DOI: 10.1371/journal.pone.0130982.
  27. Yang B., Xu Y., Liu X. et al. IL-23R and IL-17A polymorphisms correlate with susceptibility of ankylosing spondylitis in a Southwest Chinese population // Oncotarget. – 2017; 8 (41): 70310–6. DOI: 10.18632/oncotarget.20319.
  28. Ruan W., Xie J., Jin Q. et al. The Diagnostic and Prognostic Role of Interleukin 12B and Interleukin 6R Gene Polymorphism in Patients With Ankylosing Spondylitis // J. Clin. Rheumatol. – 2017; 24 (1): 18–24. DOI: 10.1097/rhu.0000000000000610.
  29. Kaplanski G. Interleukin-18: Biological properties and role in disease pathogenesis // Immunol. Rev. – 2017; 281 (1): 138–53. DOI: 10.1111/imr.12616.
  30. Manolova I., Ivanova M., Boyadzhieva V. et al. Elevated serum levels of IL-18 in patients with rheumatoid arthritis and ankylosing spondylitis // Revmatologiia (Bulgaria). – 2013; 21 (2): 35–41.
  31. Ivanova M., Manolova I., Goycheva P. et al. Serum cytokines (TNF-alpha and IL-18) in ankylosing spondylitis in relation to disease activity // Comptes rendus de l’Académie bulgare des sciences: sciences mathématiques et naturelles. – 2014; 67 (4): 593–602.
  32. Sode J., Bank S., Vogel U. et al. Genetically determined high activities of the TNF-alpha, IL23/IL17, and NFkB pathways were associated with increased risk of ankylosing spondylitis. // BMC Med. Genet. – 2018; 19 (1): 165. DOI: 10.1186/s12881-018-0680-z.
  33. Wang W., Liu Y., Ma X. et al. Association Between Protein Tyrosine Phosphatase Non-Receptor Type 22 (PTPN22) Polymorphisms and Risk of Ankylosing Spondylitis: A Meta-analysis // Med. Sci. Monit. – 2017; 23: 2619–24. DOI: 10.12659/MSM.901083.
  34. Meng Q., Zhang X., Liu X. et al. Association of PTPN22 polymorphsims and ankylosing spondylitis susceptibility // Int. J. Clin. Experim. Pathol. – 2015; 8 (1): 933–7.
  35. El-Lebedy D., Raslan H., Ibrahim A. et al. Association of STAT4 rs7574865 and PTPN22 rs2476601 polymorphisms with rheumatoid arthritis and non-systemically reacting antibodies in Egyptian patients // Clin Rheumatol. – 2017; 36 (9): 1981–7. DOI: 10.1007/s10067-017-3632-7.
  36. Dahmani C., Benzaoui A., Amroun H. et al. Association of the HLA-B27 antigen and the CTLA4 gene CT60/rs3087243 polymorphism with ankylosing spondylitis in Algerian population: A case-control study // Int. J. Immunogen. – 2018; 45 (3): 109–17. DOI: 10.1111/iji.12369.
  37. Wu J., Zhang L., Zhou Y. The association between CTLA-4 (+49 A/G) polymorphism and susceptibility to ankylosing spondylitis: a meta-analysis // Int. J. Rheum. Dis. – 2015; 19 (12): 1237–43. http://dx.doi.org/10.1111/1756-185x.12705.
  38. Huang C.-H., Wei J., Chen C.-C. et al. Associations of the PTPN22 and CTLA-4 genetic polymorphisms with Taiwanese ankylosing spondylitis // Rheumatol. Int. – 2014; 34 (5): 683–91. DOI: 10.1007/s00296-013-2894-x.
  39. Гусева И.А., Лучихина Е.Л., Абрамов Д.Д. и др. Полиморфизм гена CTLA-4 (+49A>G) – предиктор раннего назначения генно-инженерных биологических препаратов у больных ранним ревматоидным артритом, не отвечающих на терапию метотрексатом. Молекулярная диагностика, 2017. Сб. тр. IX Всеросс. научно-практ. конф. с междунар. участием. 2017, 526–7 [Guseva I.A., Luchikhina E.L., Abramov D.D. et al. Polimorfizm gena CTLA-4 (+49A>G) – prediktor rannego naznacheniya genno- inzhenernykh biologicheskikh preparatov u bol’nykh rannim revmatoidnym artritom, ne otvechayushchikh na terapiyu metotreksatom. Molekulyarnaya diagnostika, 2017. Sb. Tr. IX Vseross. nauchno-prakt. konf. s mezhdunar. uchastiem. 2017; 526–7 (in Russ.)].
  40. Ntusi N., Francis J., Sever E. et al. Anti-TNF modulation reduces myocardial inflammation and improves cardiovascular function in systemic rheumatic diseases // Int. J. Cardiol. – 2018; 270: 253–9. DOI: 10.1016/j.ijcard.2018.06.099.
  41. Hu N., Cui Y., Yang Q. et al. Association of polymorphisms in TNF and GRN genes with ankylosing spondylitis in a Chinese Han population // Rheumatol. Int. – 2018; 38 (3): 481–7. DOI: 10.1007/s00296-017-3899-7.