КАРДИОТОКСИЧНОСТЬ АНТИПСИХОТИЧЕСКИХ препаратов И МИТОХОНДРИАЛЬНАЯ ДИСФУНКЦИЯ

Скачать статью в PDF
Номер журнала: 
4
Год издания: 
2017

В. Волков, кандидат медицинских наук Тверской центр судебных экспертиз E-mail: patowolf@yandex.ru

Рассмотрены морфологические изменения и нарушения функции митохондрий, прежде всего кардиомиоцитов, обусловленные побочным кардиотоксическим действием антипсихотических препаратов.

Ключевые слова: 
кардиология
антипсихотические препараты
кардиотоксичность
митохондриальная дисфункция
оксидантный стресс

Для цитирования
Волков В. КАРДИОТОКСИЧНОСТЬ АНТИПСИХОТИЧЕСКИХ препаратов И МИТОХОНДРИАЛЬНАЯ ДИСФУНКЦИЯ . Врач, 2017; (4): 7-11


It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

Список литературы: 
  1. Волков В.П. Внезапная сердечная смерть при антипсихотической терапии (обзор иностранной литературы) // Психиат. психофармакотер. – 2011; 13 (3): 40–5.
  2. Воробьева В.В., Шабанов П.Д., Прошин С.Н. Коррекция митохондриальной дисфункции кардиомиоцитов кролика с помощью субстратных антигипоксантов // Педиатр. – 2015; 6 (3): 74–80. http://dx.doi.org/10.17816/PED6374-80
  3. Заднипряный И.В., Третьякова О.С., Сатаева Т.П. Морфологический субстрат вторичной митохондриальной дисфункции при транзиторной ишемии миокарда у крысят // Таврический мед.-биол. вестн. – 2013; 16 (3, ч. 1): 174–8.
  4. Леонтьева И.В., Сухоруков В.С., Ключников С.О. Митохондриальная дисфункция при кардиомиопатиях у детей // Лекции по педиатрии. Кардиология. – 2004; 4: 398–413.
  5. Васюк Ю.А., Куликов К.Г., Кудряков О.Н. и др. Вторичная митоходриальная дисфункция при остром коронарном синдроме // Рациональная фармакотер. в кардиол. – 2007; 3 (1): 41–7.
  6. Серкова В.К. Метаболическая кардиоцитопротекция в терапии больных ишемической болезнью сердца: роль парциальных ингибиторов окисления жирных кислот // Рациональная фармакотер. – 2008; 1 (6): 26–9.
  7. Gonçalves V., Zai C., Tiwari A. et al. A hypothesis-driven association study of 28 nuclear-encoded mitochondrial genes with antipsychotic-induced weight gain in schizophrenia // Neuropsychopharmacology. – 2014; 39 (6): 1347–54. doi: 10.1038/npp.2013.312.
  8. Sadowska-Bartosz I., Galiniak S., Bartosz G. et al. Antioxidant properties of atypical antipsychotic drugs used in the treatment of schizophrenia // Schizophr. Res. – 2016; 176 (2–3): 245–51. DOI: 10.1016/j.schres.2016.07.010.
  9. Banović M., Ristić A. The role of mitochondrial dysfunction in heart failure and potential therapeutic targets // Curr. Pharm. – 2016; 22 (31): 4752–62.
  10. Berdanier С. Introduction to mitochondria // Mitochondria in health and disease / Boca Raton, London, NY, Singapure: CRC Press, Taylor & Francis Group, 2005; 1–64.
  11. Lancel S., Montaigne D., Marechal X. et al. Carbon monoxide improves cardiac function and mitochondrial population quality in a mouse model of metabolic syndrome // PLoS ONE. – 2012; 7 (8): e41836. DOI: 10.1371/journal.pone.0041836.
  12. Noland R., Koves T., Seiler S. et al. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control // J. Biol. Chem. – 2009; 284 (34): 22840–52. DOI: 10.1074/jbc.M109.032888.
  13. Cherry A., Piantadosi C. Regulation of mitochondrial biogenesis and its intersection with inflammatory responses // Antioxid. Redox Signal. – 2015; 22 (12): 965–76. DOI: 10.1089/ars.2014.6200.
  14. Walss-Bass C., Weintraub S., Hatch1 J. et al. Clozapine causes oxidation of proteins involved in energy metabolism: a possible mechanism for antipsychotic-induced metabolic alterations // Int. J. Neuropsychopharmacol. – 2008; 11 (8): 1097–104. DOI: 10.1017/S1461145708008882.
  15. Fehsel K., Loeffler S., Krieger K. et al. Clozapine induces oxidative stress and proapoptotic gene expression in neutrophils of schizophrenic patients // J. Clin. Psychopharmacol. – 2005; 25 (5): 419–26.
  16. Baig M., Navaira E., Escamilla M. et al. Clozapine treatment causes oxidation of proteins involved in energy metabolism in lymphoblastoid cells: a possible mechanism for antipsychotic- induced metabolic alterations // J. Psychiatr. Pract. – 2010; 16 (5): 325–33. DOI: 10.1097/01.pra.0000388627.36781.6a.
  17. Contreras-Shannon V., Heart D., Paredes R. et al. Clozapine-induced mitochondria alterations and inflammation in brain and insulin-responsive cells // PLoS One. – 2013; 8 (3): e59012. DOI: 10.1371/journal.pone.0059012.
  18. Modica-Napolitano J., Lagace C., Brennan W. et al. Differential effects of typical and atypical neuroleptics on mitochondrial function in vitro // Arch. Pharm. Res. – 2003; 26 (11): 951–9. DOI:10.1007/BF02980205.
  19. Varga Z., Ferdinandy P., Liaudet L. et al. Drug-induced mitochondrial dysfunction and cardiotoxicity // Am. J. Physiol. Heart Circ. Physiol. – 2015; 309 (9): 1453–67. DOI: 10.1152/ajpheart.00554.2015.
  20. Zhang Y., Liao H., Zhong S. et al. Effect of N-n-butyl haloperidol iodide on ROS/JNK/Egr-1 signaling in H9c2 cells after hypoxia/reoxygenation // Sci. Rep. – 2015; 5: 11809. DOI: 10.1038/srep11809.
  21. Choi K., Higgs B., Weis S. et al. Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects // BMC Psychiatry. – 2009; 9: 57. DOI: 10.1186/1471-244X-9-57.
  22. Patel A., Song J., Chu S. et al. Epithelial cell mitochondrial dysfunction and PINK1 are induced by transforming growth factor-beta1 in pulmonary fibrosis // PLoS One. – 2015; 10 (3): e0121246. DOI: 10.1371/journal.pone.0121246.
  23. Cao Y.-Y., Chen Z.-W., Gao Y.-H. et al. Exenatide reduces tumor necrosis factor-α-induced apoptosis in cardiomyocytes by alleviating mitochondrial dysfunction // Chin. Med. J. (Engl.). – 2015; 128 (23): 3211–8. DOI: 10.4103/0366-6999.170259.
  24. Fischer R., Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF // Oxid. Med. Cell. Longev. – 2015; 2015: Art. ID 610813, 18 p. DOI: 10.1155/2015/610813.
  25. Dorn G. 2nd, Vega R., Kelly D. Mitochondrial biogenesis and dynamics in the developing and diseased heart // Genes Dev. – 2015; 29 (19): 1981–91. DOI: 10.1101/gad.269894.115.
  26. Gropler R., Beanlands R., Dilsizian V. et al. Imaging myocardial metabolic remodeling // J. Nucl. Med. – 2010; 51 (Suppl. 1): 88S–101S. DOI: 10.2967/jnumed.109.068197.
  27. Tourjman V., Koué M.-È., Kouassi E. et al. In vivo immunomodulatory effects of antipsychotics on inflammatory mediators: a review // Adv. Biosci. Biotech. – 2012; 3: 551–65. DOI: 10.4236/abb.2012.324072.
  28. Wu S., Kao C., Wang L. et al. Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure // Nat. Commun. – 2015; 10 (6): 8245. DOI: 10.1038/ncomms9245.
  29. Iwamoto K., Bundo M., Kato T. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis // Hum. Mol. Genet. – 2005; 14 (2): 241–53. DOI: 10.1093/hmg/ddi022.
  30. Khalifa A. Pro-oxidant activity of zuclopenthixol in vivo: differential effect of the drug on brain oxidative status of scopolamine-treated rats // Hum. Exp. Toxicol. – 2004; 23 (9): 439–45. DOI: 10.1191/0960327104ht470oa.
  31. Lee H.-C., Wei Y.-H. Mitochondrial DNA mutation, oxidative stress, and alteration of gene expression in human aging // Mitochondria in health and disease. C. Berdanier (ed.) / Boca Raton, London, NY, Singapure: CRC Press, Taylor & Francis Group, 2005; p. 319–62.
  32. Magliaro B., Saldanha C. Clozapine protects PC-12 cells from death due to oxidative stress induced by hydrogen peroxide via a cell-type specific mechanism involving inhibition of extracellular signal-regulated kinase phosphorylation // Brain Res. – 2009; 1283: 14–24. DOI: 10.1016/j.brainres.2009.05.063.
  33. Marin-Garcia J., Akhmedov A. Mitochondrial dynamics and cell death in heart failure // Heart Fail. Rev. – 2016; 21 (2): 123–36. DOI: 10.1007/s10741-016-9530-2.
  34. Yang K., Kyle J., Makielski J. et al. Mechanisms of sudden cardiac death: oxidants and metabolism // Circ Res. – 2015; 116 (12): 1937–55. DOI: 10.1161/CIRCRESAHA.116.304691.
  35. Aroor A., Mandavia C., Ren J. et al. Mitochondria and oxidative stress in the cardiorenal metabolic syndrome // Cardiorenal. Med. – 2012; 2 (2): 87–109. DOI: 10.1159/000335675.
  36. Kuzmicic J., Del Campo A., López-Crisosto C. et al. Mitochondrial dynamics: a potential new therapeutic target for heart failure // Rev. Esp. Cardiol. – 2011; 64 (10): 916–23. DOI: 10.1016/j.rec.2011.05.022.
  37. Nehra S., Bhardwaj V., Ganju L. et al. Nanocurcumin prevents hypoxia induced stress in primary human ventricular cardiomyocytes by maintaining mitochondrial homeostasis // PLoS One. – 2015; 10 (9): e0139121. DOI: 10.1371/journal.pone.0139121.
  38. Ng F., Berk M., Dean O. et al. Oxidative stress in psychiatric disorders: evidence base and therapeutic implications // Int. J. Neuropsychopharmacol. – 2008; 11 (6): 851–76. DOI: 10.1017/S1461145707008401.
  39. Wu W., Xu H., Wang Z. et al. PINK1-parkin-mediated mitophagy protects mitochondrial integrity and prevents metabolic stress-induced endothelial injury // PLoS One. – 2015; 10 (7): e0132499. DOI: 10.1371/journal.pone.0132499.
  40. Liu S., Han Y., Zhang T. et al. Protective effect of trifluoperazine on hydrogen peroxide-induced apoptosis in PC12 cells // Brain Res. Bull. – 2011; 84 (2): 183–8. DOI: 10.1016/j.brainresbull.2010.12.008.
  41. Roche H. Dietary fatty acids and metabolic syndrome // Oxidative stress and inflammatory mechanisms in obesity, diabetes, and the metabolic syndrome. Eds. L. Packer, H. Sies / Boca Raton, London, NY: CRC Press, Taylor & Francis Group, 2008; p. 243–50.
  42. Schleicher E., Friess U. Oxidative stress, AGE, and atherosclerosis // Kidney Int. Suppl. – 2007; 106: S17–S26. DOI: 10.1038/sj.ki.5002382.
  43. Takeda N. Mitochondrial DNA in Cardiomyopathies // Mitochondria in health and disease. C.D. Berdanier (ed.) / Boca Raton, London, NY, Singapure: CRC Press, Taylor & Francis Group, 2005; p. 363–75.
  44. Dandona P., Chaudhuri A., Mohanty P. et al. The Metabolic Syndrome: The Question of Balance between the Pro-Inflammatory Effect of Macronutrients and the Anti-Inflammatory Effect of Insulin. Oxidative stress and inflammatory mechanisms in obesity, diabetes, and the metabolic syndrome. Eds. L. Packer, H. Sies / Boca Raton, London, NY: CRC Press, Taylor & Francis Group, 2008; p. 15–31.
  45. Milne G., Gao L., Brooks J. et al. The role of oxidative stress in diseases associated with overweight and obesity. Oxidative stress and inflammatory mechanisms in obesity, diabetes, and the metabolic syndrome. Eds. L. Packer, H. Sies / Boca Raton, London, NY: CRC Press, Taylor & Francis Group, 2008; p. 33–46.
  46. Toler S. Oxidative stress plays an important role in the pathogenesis of drug-induced retinopathy // Exp. Biol. Med. (Maywood). – 2004; 229 (7): 607–15.
  47. Yang M., Chen K., Lung F. Generalized estimating equation model and long-term exposure effect of antipsychotics on SH-SY5Y cells against oxidative stressors // Eur. J. Pharmacol. – 2014; 740: 697–702. DOI: 10.1016/j.ejphar.2014.06.007.