МАТРИКСНЫЕ МЕТАЛЛОПРОТЕИНАЗЫ КАК ПАТОГЕНЕТИЧЕСКИЕ И ДИАГНОСТИЧЕСКИЕ БИОМАРКЕРЫ РУБЦОВ КОЖИ

Скачать статью в PDF
Номер журнала: 
3
Год издания: 
2017

Е. Лучина, кандидат медицинских наук Военно-медицинская академия им. С.М. Кирова, Санкт-Петербург E-mail: levistraus@mail.ru

Для разработки оптимальных методов лечения рубцовых изменений кожи необходимо понимание патогенеза раневого процесса, который является сложным комплексом биологических реакций.

Ключевые слова: 
дерматология
рубцовая ткань
биомаркеры
матриксные металлопротеиназы

Для цитирования
Лучина Е. МАТРИКСНЫЕ МЕТАЛЛОПРОТЕИНАЗЫ КАК ПАТОГЕНЕТИЧЕСКИЕ И ДИАГНОСТИЧЕСКИЕ БИОМАРКЕРЫ РУБЦОВ КОЖИ . Врач, 2017; (3): 14-17


It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

Список литературы: 
  1. Стенько А.Г., Круглова Л.С., Шматова А.А. и др. Консервативное лечение формирующихся рубцов: обзор современных технологий // Вестник эстетической медицины. – 2014; 13 (2): 42–50.
  2. Тарасенкова М.С., Юцковская Я.А., Наумчик Г.А. и др. Современные цметоды профилактики постоперационных патологических рубцов кожи // Эксперим. и клин. дерматокосметол. – 2010; 3: 50–4.
  3. Roh Y., Seo C., Jang K. Effects of a skin rehabilitation nursing program on skin status, depression, and burn-specific health in burn survivors // Rehabil. Nurs. – 2010; 35 (2): 65–9.
  4. Mamalis A., Jagdeo J. Light-emitting diode-generated red light inhibits keloid fibroblast proliferation // Dermatol. Surg. – 2015; 41 (1): 35–9.
  5. Wang A., Zhang W., Liang F. et al. Pre-expanded thoracodorsal artery perforator-based flaps for repair of severe scarring in cervicofacial regions // J. Reconstr. Microsurg. – 2014; 30 (8): 539–46.
  6. Gill S., Parks W. Metalloproteinases and their inhibitors: regulators of wound healing // Int. J. Biochem. Cell Biol. – 2008; 40: 1334–47.
  7. Герштейн Е.С., Левкина Н.В., Дигаева М.А. и др. Матриксные металлопротеиназы-2, -7, -9 и тканевой ингибитор металлопротеиназ 1-го типа в опухолях и сыворотке крови больных с новообразованиями яичников // Бюл. эксперим. биол. и медицины. – 2010; 149 (5): 562–5.
  8. Nissi R., Talvensaari-Mattila A., Kotila V. et al. Circulating matrix metalloproteinase MMP-9 and MMP-2/TIMP-2 complex are associated with spontaneous early pregnancy failure // Reprod. Biol. Endocrinol. – 2013; 15 (11): 2
  9. Cho S., Ryu D., Lee S. et al Scar characteristics and treatment expectations: a survey of 589 patients // Cosmet. Laser Ther. – 2009; 11 (4): 224–8.
  10. Wagner W., Alfrink M., Micke O. Results of prophylactic irradiation in patients with resected keloids a retrospective analysis // Acta. Oncol. – 2000; 39 (2): 217–20.
  11. Марголина А.А., Эрнандес Е.И., Зайкина О.Э. Новая косметология / М.: Косметика и медицина, 2002; 208 с.
  12. Матыцин В.О., Михеева Н.В. Методы инструментальной диагностики и функционального состояния кожи // Натуральная фармакол. и косметол. – 2005; 2: 35–7.
  13. Снарская Е.С. Комплексная терапия эстетических дефектов кожи в результате патологического фиброгенеза // Дерматология. Приложение к журналу Consilium Medicum. – 2013; 2–3: 15–20.
  14. Артыков К.П., Саидов М.С., Мухамадиева К.М. Влияние иммуномодулирующей терапии на результаты хирургической коррекции келлоидных рубцов кожи // Доклады Академии наук Республики Таджикистан. – 2014; 57 (2): 164–9.
  15. Chen J., Wang J., Zhuang H. Influence of substance P on the proliferation and apoptosis of fibroblasts of pathological scars // Zhonghua Shao Shang ZaZhi. – 2006; 22 (4): 277–80.
  16. Sauder D.N. Cutaneous immunobiology // Ann. Dermatol. Venereol. – 2002; 129: 274–83.
  17. Wolfram D., Tzankov A., Polzl P. et al. Hypertrophic scars and keloids. А review of their pathophysiology, risk factors, and therapeutic management // Dermatol. Surg. – 2009; 35: 171–81.
  18. Eto H., Suga H., Aoi N. et al. Therapeutic potential of fibroblast growth factor-2 for hypertrophic scars: upregulation of MMP-1 and HGF expression // Lab. Invest. – 2012; 92: 214–23.
  19. Катунина А.И., Герштейн Е.С., Терешкина И.В. и др. Матриксные металлопротеиназы в опухолях больных раком молочной железы // Клин. лаб. диагностика. – 2010; 9: 27–7а.
  20. Ortak H., Demir S., Ateş Ö. et al. The role of MMP2 (–1306C>T) and TIMP2(–418G>C) promoter variants in age-related macular degeneration // Ophthalmic Genet. – 2013; 34 (4): 217–22.
  21. Imaizumi R., Akasaka Y., Inomata N. et al. Promoted activation of matrix metalloproteinase (MMP)-2 in keloid fibroblasts and increased expression of MMP-2 in collagen bundle regions: implications for mechanisms of keloid progression // Histopathology. – 2009; 54: 722–30.
  22. Tandara A., Mustoe T. MMP- and TIMP-secretion by human cutaneous keratinocytes and fibroblasts – impact of coculture and hydration // J. Plast. Reconstr. Aesthet. Surg. – 2011; 64: 108–16.
  23. Ulrich D., Ulrich F., Unglaub F. et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in patients with different types of scars and keloids // J. Plast. Reconstr. Aesthet. Surg. – 2010; 63: 1015–21.
  24. Simon F., Bergeron D., Larochelle S. et al. Enhanced secretion of TIMP-1 by human hypertrophic scar keratinocytes could contribute to fibrosis // Burns. – 2012; 38: 421–7.
  25. Taghiabadi E., Mohammadi P., Aghdami N. et al. Treatment of Hypertrophic Scar in Human with Autologous Transplantation of Cultured Keratinocytes and Fibroblasts along with Fibrin Glue // Cell J. – 2015; 17 (1): 49–58.
  26. Sadick H., Herberger A., Riedel K. et al. TGF-beta1 antisense therapy modulates expression of matrix metalloproteinases in keloid-derived fibroblasts // Int. J. Mol. Med. – 2008; 22: 55–60.
  27. Fujiwara M., Muragaki Y., Ooshima A. Keloid-derived fibroblasts show increased secretion of factors involved in collagen turnover and depend on matrix metalloproteinase for migration // Br. J. Dermatol. – 2005; 153: 295–300.
  28. Uchida G., Yoshimura K., Kitano Y. et al. Tretinoin reverses upregulation of matrix metalloproteinase-13 in human keloid derived fibroblasts // Exp. Dermatol. – 2003; 12 (Suppl. 2): 35–42.
  29. Chavez-Munoz C., Hartwell R., Jalili R. et al. Application of an indoleamine 2,3-dioxygenase-expressing skin substitute improves scar formation in a fibrotic animal model // J. Invest. Dermatol. – 2012; 132: 1501–5.
  30. Li Y., Kilani R., Rahmani-Neishaboor E. et al. Kynurenine increases matrix metalloproteinase-1 and -3 expression in cultured dermal fibroblasts and improves scarring in vivo // J. Invest. Dermatol. – 2014; 134: 643–50.
  31. Wei Y., Yan X., Ma L. et al. Oleanolic acid inhibits hypertrophic scarring in the rabbit ear model // Clin. Exp. Dermatol. – 2011; 36: 528–33.
  32. Kuo Y., Wu W., Jeng S. et al. Suppressed TGF-beta1 expression is correlated with up-regulation of matrix metalloproteinase-13 in keloid regression after flashlamp pulsed-dye laser treatment // Lasers Surg. Med. – 2005; 36: 38–42.
  33. Rahmani-Neishaboor E., Yau F., Jalili R. et al. Improvement of hypertrophic scarring by using topical anti-fibrogenic/anti-inflammatory factors in a rabbit ear model // Wound Repair Regen. – 2010; 18: 401–8.
  34. Djafarzadeh R., Conrad C., Notohamiprodjo S. et al. Cell surface engineering using glycosylphosphatidylinositol anchored tissue inhibitor of matrix metalloproteinase-1 stimulates cutaneous wound healing // Wound Repair Regen. – 2014; 22: 70–6.
  35. Stuart K., Paderi J., Snyder P. et al. Collagen-binding peptidoglycans inhibit MMP mediated collagen degradation and reduce dermal scarring // PLoS One. – 2011; 6: e22139.
  36. Ghahary A., Karimi-Busheri F., Marcoux Y. et al. Keratinocyte-releasable stratifin functions as a potent collagenase-stimulating factor in fibroblasts // J. Invest. Dermatol. – 2004; 122: 1188–97.
  37. Rahmani-Neishaboor E., Jackson J., Burt H. et al. Composite hydrogel formulations of stratifin to control MMP-1 expression in dermal fibroblasts // Pharm. Res. – 2009; 26: 002–2014.
  38. Lee W., Ahn H., Roh H. et al. Decorin-expressing adenovirus decreases collagen synthesis and upregulates MMP expression in keloid fibroblasts and keloid spheroids // Exp. Dermatol. – 2015; 24 (8): 591–7.