ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ МЕСТНОЙ АНТИБИОТИКОТЕРАПИИ В ЛЕЧЕНИИ ОСТЕОМИЕЛИТА

Скачать статью в PDF
Номер журнала: 
11
Год издания: 
2016

В. Привольнев (1), кандидат медицинских наук, А. Родин (1), кандидат медицинских наук, Р. Федоров (2), Д. Хвостов (2) 1 -Смоленский государственный медицинский университет 2 -Смоленская областная клиническая больница E-mail: vladislav.privolnev@gmail.com

Обсуждаются современные методики лечения хронического остеомиелита путем доставки антибиотика непосредственно к очагу инфекции. Проанализированы перспективы разных материалов (полимеров, металлов, губок) в качестве средств транспортировки препаратов к измененной костной ткани. Указаны преимущества и недостатки каждой методики. Обозначены проблемы, которые необходимо решить в ближайшем будущем.

Ключевые слова: 
травматология и ортопедия
остеомиелит
антибиотикотерапия
перипротезная инфекция
местные антибактериальные средства

Для цитирования
Привольнев В., Родин А., Федоров Р., Хвостов Д. ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ МЕСТНОЙ АНТИБИОТИКОТЕРАПИИ В ЛЕЧЕНИИ ОСТЕОМИЕЛИТА . Врач, 2016; (11): 12-16


It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

Список литературы: 
  1. Qureshi A., Terrell L., Monroe W. et al. Antimicrobial biocompatible bioscaffolds for orthopaedic implants // J. Tissue Eng. Regen. Med. – 2014; 8 (5): 386–95.
  2. Привольнев В.В., Родин А.В., Каракулина Е.В. Местное применение антибиотиков в лечении инфекций костной ткани // Клин. микробиол. и антимикроб. химиотер. – 2012; 2: 118–31.
  3. Хвостов Д.Л., Привольнев В.В. Профилактика инфекционных осложнений в травматологии и ортопедии // Клин. микробиол. и антимикроб. химиотер. – 2014; 3: 168–75.
  4. McLaren A. Alternative materials to acrylic bone cement for delivery of depot antibiotics in orthopaedic infections // Clin. Orthop. Relat. Res. – 2004; 427: 101–6.
  5. de Klaver P., Hendriks J., van Onzenoort H. et al. Gentamicin serum concentrations in patients with gentamicin-PMMA beads for infected hip joints: a prospective observational cohort study // Ther. Drug. Monit. – 2012; 34 (1): 67–71.
  6. Hilbrig F., Freitag R. Hydroxyapatite in bioprocessing. In: Subramanian G., ed. Biopharmaceutical production technology. Vol. 1 /Weinheim: Wiley-VCH, 2012; 283–331.
  7. Eppell S., Tong W., Katz J. et al. Shape and size of isolated bone mineralites measured using atomic force microscopy // J. Orthop. Res. – 2001; 19: 1027–34.
  8. Hofmann M., Mohammed A., Perrie Y. et al. High-strength resorbable brushite bone cement with controlled drug-releasing capabilities // Acta Biomater. – 2009; 5: 43–9.
  9. Ambard A., Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties // J. Prosthodont. – 2006; 15: 321–8.
  10. Rainer A., Centola M., Spadaccio C. et al. Comparative study of different techniques for the sterilization of poly-L-lactide electrospun microfibers: effectiveness vs. material degradation // Int. J. Artif. Organs. – 2010; 33 (2): 76–85.
  11. Rauschmann M., Wichelhaus T., Stirnal V. et al. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections // Biomaterials. – 2005; 26 (15): 2677–84.
  12. Vilar G., Tulla-Puche J., Albericio F. Polymers and drug delivery systems // Curr. Drug. Deliv. – 2012; 9 (4): 367–94.
  13. Sabir M., Xu X. A review of biodegradable polymeric materials for bone tissue engineering applications // J. Mater. Sci. – 2009; 44: 5713–24.
  14. Kluin O., van der Mei H., Busscher H. et al. Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis // Expert Opin. Drug. Deliv. – 2013; 10 (3): 341–51.
  15. Moskowitz J., Blaisse M., Samuel R. et al. The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model // Biomaterials. – 2010; 31 (23): 6019–30.
  16. Tiainen J., Soini Y., Suokas E. et al. Tissue reactions to bioabsorbable ciprofloxacin-releasing polylactide-polyglycolide 80/20 screws in rabbits’ cranial bone // J. Mater. Sci. Mater. Med. – 2006; 17 (12): 1315–22.
  17. Lemaire S., Van Bambeke F., Pierard D. et al. Activity of fusidic acid against extracellular and intracellular Staphylococcus aureus: influence of pH and comparison with linezolid and clindamycin // Clin. Infect. Dis. – 2011; 52 (Suppl. 7): S493–8503.
  18. Ouédraogo M., Semdé R., Somé I. et al. Monoolein-water liquid crystalline gels of gentamicin as bioresorbable implants for the local treatment of chronic osteomyelitis: in vitro characterization // Drug Dev. Ind. Pharm. – 2008; 34 (7): 753–60.
  19. Xiong M., Li Y., Bao Y. et al. Bacteria-responsive multifunctional nanogel for targeted antibiotic delivery // Adv. Mater. – 2012; 24 (46): 6175–80.
  20. Semdé R., Gondi R., Sombié B. et al. Effect of hydroxyapatite on the physicochemical characteristics of a gentamicin-loaded monoolein gel intended to treat chronic osteomyelitis // J. Adv. Pharm. Technol. Res. – 2012; 3 (2): 100–5.
  21. Aquino R., Auriemma G., Mencherini T. et al. Design and production of gentamicin/dextrans microparticles by supercritical assisted atomisation for the treatment of wound bacterial infections // Int. J. Pharm. – 2013; 440 (2): 188–94.
  22. Weszl M., Skaliczki G., Cselenyák A. et al. Freeze-dried human serum albumin improves the adherence and proliferation of mesenchymal stem cells on mineralized human bone allografts // J. Orthop. Res. – 2012; 30 (3): 489–96.
  23. Zhou J., Fang T., Wen J. et al. Silk coating on poly(ε-caprolactone) microspheres for the delayed release of vancomycin // J. Microencapsul. – 2011; 28 (2): 99–107.
  24. Ziv K., Nuhn H., Ben-Haim Y. et al. A tunable silk-alginate hydrogel scaffold for stem cell culture and transplantation // Biomaterials. – 2014; 35: 3736–43.
  25. Orhan Z., Cevher E., Mülazimoglu L. et al. preparation of ciprofloxacin hydrochloride-loaded chitosan and pectin microspheres: their evaluation in an animal osteomyelitis model // J. Bone Joint Surg. Br. – 2006; 88 (2): 270–5.
  26. Huneault L., Lussier B., Dubreuil P. et al. Prevention and treatment of experimental osteomyelitis in dogs with ciprofloxacin-loaded crosslinked high amylose starch implants // J. Orthop. Res. – 2004; 22 (6): 1351–7.
  27. Xing J., Hou T., Luobu B. et al. Anti-infection tissue engineering construct treating osteomyelitis in rabbit tibia // Tissue Eng. Part A. – 2013; 19 (1–2): 255–63.
  28. Knaepler H. Local application of gentamicin-containing collagen implant in the prophylaxis and treatment of surgical site infection in orthopaedic surgery // Int. J. Surg. – 2012; 10 (Suppl. 1): S15–820.
  29. Mendel V., Simanowski H., Scholz H. et al. Therapy with gentamicin-PMMA beads, gentamicin-collagen sponge, and cefazolin for experimental osteomyelitis due to Staphylococcus aureus in rats // Arch. Orthop. Trauma Surg. – 2005; 125 (6): 363–8.
  30. Chaudhary S., Sen R., Saini U. et al. Use of gentamicin-loaded collagen sponge in internal fixation of open fractures // Chin. J. Traumatol. – 2011; 14 (4): 209–14.
  31. Browne S., Zeugolis D., Pandit A. Collagen: finding a solution for the source // Tissue Eng. Part A. – 2013; 19 (13–14): 1491–4.
  32. Hou J., Wang J., Cao L. et al. Segmental bone regeneration using rhB-MP-2-loaded collagen/chitosan microspheres composite scaffold in a rabbit model // Biomed. Mat. – 2012; 7: 035002.
  33. Kundu B., Nandi S., Dasgupta S. et al. Macro-to-micro porous special bioactive glass and ceftriaxone-sulbactam composite drug delivery system for treatment of chronic osteomyelitis: an investigation through in vitro and in vivo animal trial // J. Mater. Sci. Mater. Med. – 2011; 22 (3): 705–20.
  34. Pavelić K., Hadžija M. Medical applications of zeolites. In: Auerbach S.M.; Carrado, K.A.; Dutta, P.K., editors. Handbook of zeolite science and technology / New York: Marcel Dekker, 2005; p. 1460.
  35. Привольнев В.В., Забросаев В.С., Даниленков Н.В. Препараты серебра в местном лечении инфицированных ран // Вестник Смоленской государственной медицинской академии. – 2015; 3: 85–91.
  36. Becker R. Silver ions in the treatment of local infections // Met. Based Drugs. – 1999; 6: 311–4.
  37. Gulati K., Aw M., Losic D. Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection // Nanoscale Res. Lett. – 2011; 6: 571.
  38. Popat K., Eltgroth M., Latempa T. et al. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes // Biomaterials. – 2007; 28 (32): 4880–8.
  39. Harris L., Meredith D., Eschbach L. et al. Staphylococcus aureus adhesion to standard micro-rough and electropolished implant materials // J. Mater. Sci. Mater. Med. – 2007; 18 (6): 1151–6.
  40. Hirota M., Hayakawa T., Yoshinari M. et al. Hydroxyapatite coating for titanium fibre mesh scaffold enhances osteoblast activity and bone tissue formation // Int. J. Oral Maxillofac. Surg. – 2012; 41 (10): 1304–9.