ПЕРИНАТАЛЬНЫЕ ФАКТОРЫ РИСКА РАЗВИТИЯ РАССТРОЙСТВ ЭМОЦИОНАЛЬНО-ВОЛЕВОЙ СФЕРЫ И ПОВЕДЕНИЯ РЕБЕНКА

Скачать статью в PDF
Номер журнала: 
1
Год издания: 
2016

И. Кельмансон, доктор медицинских наук, профессор Институт специальной педагогики и психологии Международного университета семьи и ребенка им. Рауля Валленберга, Санкт-Петербург E-mail: iakelmanson@hotmail.com

Рассматривается связь неблагоприятных перинатальных факторов с риском формирования у ребенка нарушений эмоционально-волевой сферы и поведения. Обсуждается влияние на эти нарушения изменений гормонального фона беременной женщины, вредных привычек, использования ряда лекарственных препаратов, внутриутробных инфекций, алиментарного дефицита. Приводятся данные о связи риска формирования указанных нарушений с рождением ребенка в исходе кесарева сечения, недоношенностью и (или) рождением с низкой массой тела, с гипоксией в родах и родовой травмой, а также с развитием у матери послеродовой депрессии. Обсуждаются возможные механизмы, лежащие в основе выявленных ассоциаций. Намечены подходы к профилактике.

Ключевые слова: 
педиатрия
эмоционально-волевая сфера
поведение
перинатальные факторы

Для цитирования
Кельмансон И. ПЕРИНАТАЛЬНЫЕ ФАКТОРЫ РИСКА РАЗВИТИЯ РАССТРОЙСТВ ЭМОЦИОНАЛЬНО-ВОЛЕВОЙ СФЕРЫ И ПОВЕДЕНИЯ РЕБЕНКА . Врач, 2016; (1): 2-7


It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

Список литературы: 
  1. Кельмансон И.А. Перинатология и перинатальная психология / СПб: 1. Специальная литература, 2015; 343 с.
  2. Vermiglio F., Lo Presti V., Moleti M. et al. Attention deficit and hyperactivity 2. disorders in the offspring of mothers exposed to mild-moderate iodine deficiency: a possible novel iodine deficiency disorder in developed countries // J. Clin. Endocrinol. Metab. – 2004; 89 (12): 6054–60.
  3. Roman G. Autism: transient in utero hypothyroxinemia related to maternal flavonoid ingestion during pregnancy and to other environmental antithyroid agents // J. Neurol. Sci. – 2007; 262 (1–2): 15–26.
  4. Owen D., Andrews M., Matthews S. Maternal adversity, glucocorticoids and programming of neuroendocrine function and behavior // Newroscience Behav. Rev. – 2005; 29: 209–26.
  5. Weinstock M. The potential influence of maternal stress hormones on development and mental health of the offspring // Brain Behav. Immunol. – 2005; 19: 296–308.
  6. Davis E., Snidman N., Wadhwa P. et al. Prenatal maternal anxiety and 6. depression predict negative behavioral reactivity in infancy // Infancy. – 2004; 6: 319–31.
  7. Gutteling B., de Weerth C., Buitelaar J. Prenatal stress and children’s cortisol reaction to the first day of school // Psychoneuroendocrinology. – 2005; 30: 541–9.
  8. Buss C., Davis E., Muftuler L. et al. High pregnancy anxiety during mid gestation is associated with decreased gray matter density in 6–9-year-old children // Psychoneuroendocrinology. – 2010; 35 (1): 141–53.
  9. Field T., Diego M., Hernandez-Reif M. et al. Pregnancy anxiety and comorbid depression and anger: effects on the fetus and neonate // Depress. Anxiety. – 2003; 17: 140–51.
  10. Kelmanson I., Erman L., Litvina S. Maternal smoking during pregnancy and behavioural characteristics in 2–4-month-old infants // Klin. Pädiatr. – 2002; 214 (6): 359–64.
  11. Kelmanson I. Perinatal predictors of sleep disturbances in young infants // Somnologie – Schlafforschung und Schlafmedizin. – 2011; 15 (1): 39–46.
  12. Fried P., Watkinson B. 36- and 48-month neurobehavioral follow-up of children prenatally exposed to marijuana, cigarettes, and alcohol // J. Dev. Behav. Pediatr. – 1990; 11 (2): 49–58.
  13. Orlebeke J., Knol D., Verhulst F. Child behavior problems increased by maternal smoking during pregnancy // Arch. Environ. Health. – 1999; 54 (1): 15–9.
  14. Свааб Д. Мы – это наш мозг: От матки до Альцгеймера. Пер. с нидерл. Д.В. Сильверстова / СПб: Изд-во Ивана Лимбаха, 2014; 544 c.
  15. Fried P., Watkinson B., Gray R. A follow-up study of attentional behavior in 6-year-old children exposed prenatally to marihuana, cigarettes, and alcohol // Neurotoxicol. Teratol. – 1992; 14 (5): 299–311.
  16. Brown A., Begg M., Gravenstein S. influenza in the etiology of schizophrenia // Arch. Gen. Psychiatry. – 2004; 61 (8): 774–80
  17. Mortensen P., Norgaard-Pedersen B., Waltoft B. et al. Early infections of Toxoplasma gondii and the later development of schizophrenia // Schizophr. Bull. – 2007; 33 (3): 741–4.
  18. Buka S., Tsuang M., Torrey E. et al. Maternal infections and subsequent psychosis among offspring // Arch. Gen. Psychiatry. – 2001; 58 (11): 1032–7.
  19. Babulas V., Factor-Litvak P., Goetz R. Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia // Am. J. Psychiatry. – 2006; 163 (5): 927–9.
  20. Sorensen H., Mortensen E., Reinisch J. et al. Association between prenatal exposure to bacterial infection and risk of schizophrenia // Schizophr. Bull. – 2009; 35 (3): 631–7.
  21. Ciaranello A., Ciaranello R. The neurobiology of infantile autism // Annu. Rev. Neurosci. – 1995; 101–28.Balschun D., Wetzel W., Del Rey A. et al. Interleukin-6: a cytokine to forget// 22. FASEB J. – 2004; 18 (14): 1788–90.
  22. Raison C., Capuron L., Miller A. Cytokines sing the blues: inflammation and the pathogenesis of depression // Trends Immunol. – 2006; 27 (1): 24–31.
  23. Vargas D., Nascimbene C., Krishnan C. et al. Neuroglial activation and neuroinflammation in the brain of patients with autism // Ann. Neurol. – 2005; 57 (1): 67–81.
  24. Moore V., Davies M., Willson K. et al. Dietary composition of pregnant women is related to size of the baby at birth // J. Nutr. – 2004; 134 (7): 1820–6.
  25. Cannell J. On the aetiology of autism // Acta Paediatr. – 2010; 99 (8): 1128–30.
  26. Tamura T., Goldenberg R., Hou J. et al. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age // J. Pediatr. – 2002; 140 (2): 165–70.
  27. Lagercrantz H., Slotkin T. The «stress» of being born // Sci. Am. – 1986; 254 (4): 100–7.
  28. Kelmanson I. Emotional and behavioural features of preschool children born by Caesarean deliveries at maternal request // Eur. J. Dev. Psychol. – 2013; 10 (6): 676–90.
  29. Kapellou O. Effect of caesarean section on brain maturation // Acta 30. Paediatrica. – 2011; 100 (11): 1416–22.
  30. Schlinzig T., Johansson S., Gunnar A. et al. Epigenetic modulation at birth – altered DNA-methylation in white blood cells after Caesarean section // Acta Paediatr. – 2009; 98 (7): 1096–9.
  31. Carter C. Developmental consequences of oxytocin // Physiol. Behav. – 2003; 79 (3): 383–97.
  32. Juarez I., Gratton A., Flores G. Ontogeny of altered dendritic morphology in the rat prefrontal cortex, hippocampus, and nucleus accumbens following Cesarean delivery and birth anoxia // J. Comparat. Neurol. – 2008; 507 (5): 1734–47.
  33. Kesler S., Ment L., Vohr B. et al. Volumetric analysis of regional cerebral development in preterm children // Pediatr. Neurol. – 2004; 31 (5): 318–25.
  34. Peterson B., Anderson A., Ehrenkranz R. et al. Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants // Pediatrics. – 2003; 111 (5 Pt. 1): 939–48.
  35. Allin M., Walshe M., Fern A. et al. Cognitive maturation in preterm and term born adolescents // J. Neurol. Neurosurg. Psychiatry. – 2008; 79 (4): 381–6.
  36. Nosarti C., Al-Asady M., Frangou S. et al. Adolescents who were born very preterm have decreased brain volumes // Brain. – 2002; 125 (Pt. 7): 1616–23.
  37. Allin M., Matsumoto H., Santhouse A. et al. Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term // Brain. – 2001; 124 (Pt. 1): 60–6.
  38. Narberhaus A., Segarra D., Caldu X. et al. Corpus callosum and prefrontal functions in adolescents with history of very preterm birth // Neuropsychologia. – 2008; 46 (1): 111–6.
  39. Abernethy L., Palaniappan M., Cooke R. Quantitative magnetic resonance . imaging of the brain in survivors of very low birth weight // Arch. Dis. Child. – 2002; 87 (4): 279–83.
  40. Gimenez M., Junque C., Narberhaus A. et al. White matter volume and concentration reductions in adolescents with history of very preterm birth: a voxel-based morphometry study // Neuroimage. – 2006; 32 (4): 1485–98.
  41. Thomas M., Karmiloff-Smith A. Are developmental disorders like cases of adult brain damage? Implications from connectionist modelling // Behav. Brain Sci. – 2002; 25 (6): 727–50.
  42. Botting N., Powls A., Cooke R. et al. Attention deficit hyperactivity disorders and other psychiatric outcomes in very low birthweight children at 12 years // J. Child Psychol. Psychiatry. – 1997; 38 (8): 931–41.
  43. Limperopoulos C., Bassan H., Sullivan N. et al. Positive screening for autism in ex-preterm infants: prevalence and risk factors // Pediatrics. – 2008; 121 (4): 758–65.
  44. Gale C., Martyn C. Birth weight and later risk of depression in a national birth cohort // Br. J. Psychiatry. – 2004; 184: 28–33.
  45. Patton G., Coffey C., Carlin J. et al. Prematurity at birth and adolescent depressive disorder // Br. J. Psychiatry. – 2004; 184: 446–7.
  46. Monfils Gustafsson W., Josefsson A., Ekholm Selling K. et al. Preterm birth or foetal growth impairment and psychiatric hospitalization in adolescence and early adulthood in a Swedish population-based birth cohort // Acta Psychiatr. Scand. – 2009; 119 (1): 54–61.
  47. Cannon M., Jones P., Murray R. Obstetric complications and schizophrenia: historical and meta-analytic review // Am. J. Psychiatry. – 2002; 159 (7): 1080–92.
  48. Cnattingius S., Hultman C., Dahl M. et al. Very preterm birth, birth trauma, the risk of anorexia nervosa among girls // Arch. Gen. Psychiatry. – 1999; 56 (7): 634–8.
  49. Woodward L., Edgin J., Thompson D. et al. Object working memory deficits predicted by early brain injury and development in the preterm infant // Brain. – 2005; 128 (Pt. 11): 2578–87.
  50. Taylor H., Minich N., Klein N. et al. Longitudinal outcomes of very low birth . weight: neuropsychological findings // J. Int. Neuropsychol. Soc. – 2004; 10 (2): 149–63.
  51. Taylor D., Pirianov G., Edwards A. et al. Hypoxic–ischemic encephalopathy. In: H. Lagercrantz, M. Hanson, L. Ment, D. Peebles, editors. The Newborn Brain: Neuroscience and Clinical Applications / Cambridge: Cambridge University Press, 2010; p. 261–80.
  52. Guralnick M. Effectiveness of early intervention for vulnerable children: a developmental perspective // Am. J. Mental Retardation. – 1998; 102 (4): 319–45.
  53. Woodward L., Anderson P., Austin N. et al. Neonatal MRI to predic neurodevelopmental outcomes in preterm infants // N. Engl. J. Med. – 2006; 355 (7): 685–94.
  54. Als H., Lawhon G., Brown E. et al. Individualized behavioral and environmental care for the very low birth weight preterm infant at high risk for bronchopulmonary dysplasia: neonatal intensive care unit and developmental outcome // Pediatrics. – 1986; 78 (6): 1123–32.
  55. Murray L., Sinclair D., Cooper P. et al. The socioemotional development of 56. 5-year-old children of postnatally depressed mothers // J. Child Psychol. Psychiatry. – 1999; 40 (8): 1259–71.
  56. Hay D., Pawlby S., Sharp D. et al. Intellectual problems shown by 11-year old children whose mothers had postnatal depression // J. Child Psychol. Psychiatry. – 2001; 42 (7): 871–89.
  57. Beck C. The effects of postpartum depression on child development: a meta-58. analysis // Arch. Psychiatr. Nurs. – 1998; 12 (1): 12–20.